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Abstract

Assuming the existence of a weakly compact hypermeasurable cardinal
we prove that in some forcing extension N, is a strong limit cardinal and
N, +2 has the tree property. This improves a result of Matthew Foreman

(see [4]).

1 Introduction

For an infinite cardinal x, a k-tree is a tree T of height x such that every level
of T has size less than k. A tree T is a k-Aronszajn tree if T is a k-tree which
has no cofinal branches. We say that the tree property holds at k, or TP (k)
holds, if every k-tree has a cofinal branch, i.e. a branch of length x through it.
Thus, TP(x) holds iff there is no k-Aronszajn tree. TP(RXg) holds in ZFC, and it
is actually exactly the statement of the well-known Ko6nig’s lemma. Aronszajn
showed also in ZFC that there is an R;-Aronszajn tree. Hence, TP(X;) fails in
ZFC.

Large cardinals are needed once we consider trees of height greater than Rj.
Silver proved that for k > 8y TP (k) implies « is weakly compact in L. Mitchell
proved that given a weakly compact cardinal A above a regular cardinal k, one
can make )\ into k¥ so that in the extension, s has the tree property. Thus,
TP(R,) is equiconsistent with the existence of a weakly compact cardinal.

For more of the relevant literature on the tree property we refer the reader to
the following: Abraham [5], Cummings and Foreman [4], and Foreman, Magidor
and Schindler [6] have done work on the tree property at two or more successive
cardinals; Magidor and Shelah [7] have worked on the tree property at successors
of singular cardinals.

Natasha Dobrinen and Sy-D. Friedman [1] used a generalization of Sacks
forcing to reduce the large cardinal strength required to obtain the tree property
at the double successor of a measurable cardinal from a supercompact to a
weakly compact hypermeasurable cardinal (see Definition 3).

In this paper we extend the method of [1] to obtain improved upper bounds
on the consistency strength of the tree property at the double successor of
singular cardinals.

*The authors wish to thank the Austrian Science Fund (FWF) for its generous support via
project P19898-N18.



2 The tree property at <™

Definition 1. Let p be a strongly inaccessible cardinal. Then Sacks(p) denotes
the following forcing notion. A condition p is a subset of 2<? such that:

1. sep,tCs—tep.
2. Each s € p has a proper extension in p.

3. For any a < p, if (sg : f < «) is a sequence of elements of p such that
B<f <a— sz Csp,then | J{sz: 0 <a}ep.

4. Let Split(p) denote the set of s € p such that both s~0 and s™1 are in
p. Then for some club denoted C(p) C p, Split(p) = {s € p : length(s)
€ Cp)}-

The conditions are ordered as follows: ¢ < p iff ¢ C p, where ¢ < p means that
q is stronger than p.

Given p € Sacks(p), let {74 : a < p) be the increasing enumeration of C(p).
For o < p, the a-th splitting level of p, Split,(p), is the set of s € p of length
Yo For a < p we write ¢ <, p iff ¢ < p and Splitg(g) = Splitg(p) for all 8 < .

Sacks(p) satisfies the following p-fusion property: Every decraesing sequence
(P : @ < p) of elements in Sacks(p) such that for each o < p, pat+1 <o Pa, has
a lower bound, namely (), , pa € Sacks(p).

The forcing notion Sacks(p) is also < p -closed, satisfies the p™*-c.c., and
preserves pT. For a proof see [3] or [1].

Definition 2. Let p be a strongly inaccessible cardinal and let A > p be a
regular cardinal. Sacks(p, \) denotes the A-length iteration of Sacks(p) with
supports of size < p.

Sacks(p, A) satisfies the generalized p-fusion property which we describe next:
For a < p, X C p of size less than p, and p, ¢ € Sacks(p, \), we write ¢ <, x p
iff g <p(ie q[ilkq(i) <p(i) for each i < A\) and in addition, for each i € X,
g ik q(i) <4 p(i). Every decraesing sequence (p, : a < p) of elements in
Sacks(p, A) such that for each o < p, pat1 <a,x, Pa, Where the X,’s form an
increasing sequence of subsets of A each of size less than p whose union is the
union of the supports of the p,’s, has a lower bound. [The lower bound is ¢
where ¢(0) = (1,<,Pa(0), ¢(1) is a name s.t. ¢(0) |- g(1) =, ,pa(l), etc]

Assuming 2°? = p*, Sacks(p, \) is < p -closed, satisfies the A-c.c., preserves
pT, collapses A to p™* and blows up 2° to p*+. For a proof see [3] or [1].

Definition 3. We say that « is weakly compact hypermeasurable if there is
weakly compact cardinal A > k and an elementary embedding 5 : V — M with
crit(j) = w such that H(\)YV = H(\)M.

Let k be a weakly compact hypermeasurable cardinal. Define a forcing
notion P as follows. Let py be the first inaccessible cardinal and let A\g be the
least weakly compact cardinal above pg. For k < k, given A, let px41 be the
least inaccessible cardinal above A\; and let A1 be the least weakly compact
cardinal above pi41. For limit ordinals k£ < &, let p, be the least inaccessible
cardinal greater than or equal to sup;<xA\; and let Ag be the least weakly compact



cardinal above pi. Note that p, = x and ), is the least weakly compact cardinal
above k.

Let Py = {1o}. For i < k&, if i = py, for some k < &, let Q, be a P;-name for
the direct sum €P, -, Sacks(px, n):={(Sacks(px, n),p): 1 is an inaccessible < Ay
and p € Sacks(px,n)}, where (Sacks(pr,n),p) < (Sacks(pk,n’),p’) iff n =7 and
P <sacks(pp,y) P'- Otherwise let Q; be a Pi-name for the trivial forcing. Let
Py =P Q;. Let P, be the iteration ((PZ,QQ : 1 < k) with reverse Easton
support.

Theorem 1 (N. Dobrinen, S. Friedman). Assume that V is a model of ZF'C
in which GCH holds and k is a weakly compact hypermeasurable cardinal in V.
Let A > Kk be a weakly compact cardinal and let j : V. — M be an elementary
embedding with crit(j) = k, j(k) > X and H\)Y = H\NM, witnessing the
weakly compact hypermeasurability of k. Let G * g be a generic subset of P =
P.xSacks(k,\) over V. Then in V[G][g], 2¥ = x™F, k™ has the iree property,
and K is still measurable, i.e. the embedding j : V. — M can be lifted to an
elementary embedding j : V|[G]lg] — M|G][g][H][R], where G * g« H *x h is a
generic subset of j(P) over M.

For a proof see [1].

3 The tree property at the double successor of a
singular cardinal

Theorem 2. Assume that V is a model of ZFC and x is a weakly compact
hypermeasurable cardinal in V. Then there exists a forcing extension of V in
which cof (k) = w and K+ has the tree property.

Proof. Let A\ > k be a weakly compact cardinal and let j : V — M be an
elementary embedding with crit(j) = &, j(k) > XA and H(\)V = H(A\)M. We
may assume that M is of the form M = {j(f)(a) :a < A\, f: k= V,f €V}
First force as in Theorem 1 with P = P, Sacké(n, A) over V to get a model
V[G][g] in which 2F = kT x*7 has the tree property, and & is still measurable,
i.e. there is an elementary embedding j : V[G][g] — MIG][g][H][h], where
G x g* H x h is a generic subset of j(P) over M.

Now force with the usual Prikry forcing which we will denote by R :=
{(s,A) : s € [k]<¥,A € U}, where U is the normal measure on x derived
from j. We say that s is the lower part of (s, A). A condition (¢, B) is stronger
than a condition (s, A) iff s is an initial segment of t, B C A, and t — s C A.
The Prikry forcing preserves cardinals and introduces an w-sequence of ordinals
which is cofinal in k. It remains to show that it also preserves the tree property
on KTT =

In order to get a contradiction suppose that there is a k*+-Aronszajn tree
in some R-extension of V[G][g]. Then in V[G] there is a Sacks(, \) * R - name
T of size A (because Sacks(k, \) * R satisfies A-c.c.) and a condition (p,7) €
Sacks(k, A) * R which forces T to be a xtT-Aronszajn tree. Recall that \ is
a weakly compact cardinal in V[G]. Therefore, there exist in V[G] transitive
Z F~-models Ny, N7 of size A and an elementary embedding k : Ny — N; with
critical point A, such that No O H(A\)VI¢] and G,T € Ny.



Since g is also Sacks(k, A)-generic over Ny and the critical point of k is A, k
can be lifted to k* : Ny[g] — N1[g][K], where K is any Nj[g]-generic subset of
Sacks(k, [A, k(X)) in some larger universe (and where Sacks(k, [\, k()\))) is the
quotient Sacks(k, k(A\))/Sacks(k, ), i.e. the iteration of Sacks(k) indexed by
ordinals between A and k()\)). Consider the forcing R* := k*(R9) in N [g][K]
and choose any generic C* for it such that k*(r) € C*, where r = 79. Let C :=
(k*)~1[C*] be the pullback of C* under k*. Then C is an Ny[g]-generic subset
of R, because if A € Ny[g] is a maximal antichain of R then k*(A) = k*[A]
(since crit(k)=X\ and R has the k¥-c.c.) and by elementarity k*(A) is maximal
in k*(R) = R*, so k*[A] meets C* and hence A meets C. It follows that there
is an elementary embedding k** : Ny[g][C] — N1[g][K][C*] extending k*.

We have r € C. So it follows that the evaluation T of T in No[g][C]
is a A-Aronszajn tree. By elementarity k**(7) is a k**(\)-Aronszajn tree in
N1[g][K][C*] which coincides with T  up to level A\. Hence T has a cofinal branch
b in N1[g][K][C*]. We will show that b has to belong to N1[g][C] (i.e. the quo-
tient Q of the natural projection 7 : Sacks(r, k(\)) * R* — RO(Sacks(k, \) * R)
can not add a new branch), and thereby reach the desired contradiction!

Let us first analyse the quotient @ of the projection above. In Nj[g][C]
we have Q = {(p*, (s*,A*)) € Sacks(k, k(N)) * R* | for all (p, (s,A)) € g C,
(p, (s, A)) does not force that (p*, (s*, A*)) is not a condition in the quotient}.
Observe that (p, (s, A)) forces that (p*, (s*, A*)) is not a condition in Q iff the
two conditions are incompatible, which is the case iff one of the following holds:

1. p* | A is incompatible with p.

2. s* GCsand s & s*.

3. p* | Ais compatible with p, s* C s, and p* U p forces that s — s* & A~
4. p* [ A is compatible with p, s C s*, and p* [ AU p forces that s* — s & A.

It follows that Q = {(p”, (s*, A*)) € Sacks(k, k(\)) * R* | (p*, (s*, A%)) is com-
patible with all (p,(s,4)) € g+ C}, ie. Q is the set of all (p*,(s*,4%)) €
Sacks(k, k(A)) * R* such that for all (p, (s, A)) € g * C either

*

1. p* | A is compatible with p, s
s—s" G A* or

*

C s, and p* U p does not force that

2. p* | A is compatible with p, s C s*, and p* | AU p does not force that
s*—s G A}

Equivalently, Q is the set of all (p*, (s*, A*)) € Sacks(k, [\, k()\))) * R* such that
1. p* € Sacks(k, [\, k(X))),
2. s* is an initial segment of S(C) (the Prikry w-sequence arising from C')
3. p* forces that A* is in U*, and

4. for any finite subset = of S(C), some extension g of p* forces = to be a
subset of s* U A*.

We now again argue indirectly. Assume that b is not in Ny[g][C], and let b
in Ni[g] be an R* () - name for b. Identify k(7") with the R * @ - name defined



by interpreting the Sacks(k,k(\)) * R* - name k(T) in Ny as an R * @ - name
in Ni[g]. Let ((so,Ao), (po, (to, Ag))) be an R % Q - condition forcing that the
Prikry-name T is a A-tree and that b is a branch through 7' not belonging to
Ngl[C. |

Let us take a closer look at the condition ((sg,Ao), (po, (to, Ao))). Note
that the forcing @ lives in Ny[g][C], but its elements are in Ni[g], so we can
assume that (po, (to, Ao)) is a real object and not just a Prikry-name. The
Prikry condition (sg, Ag) forces that pg is an element of Sacks(k, [A, k(\))), that
to is an initial segment of S(C'), and that for all finite subsets  of S(C), some
extension of po forces z to be a subset of ty U Ag. This simply means that ¢, is
an initial segment of sg and for every finite subset x of sqg U Ag, some extension
of po forces x to be a subset of ty U Ay.

Moreover, we can assume that sy equals to. Namely, from the next claim

follows that the set of conditions of the form ((s, A), (p, (s, A))) is dense in RxQ.

Claim. Suppose that p is an element of Sacks(x, [\, k()))) which forces that A
is in U*. Then there is A(p) € U such that whenever z is a finite subset of A(p),
there is ¢ < p forcing x to be contained in A.

Proof of the claim. Define the function f : [k]<“ — 2 by

_J1 ifdg<pqlFzCA
flz) = { 0 otherwise.

By normality f has a homogeneous set A(p) € U. Tt follows that for each n € w,
f T [A(p)]™ has the constant value 1: Assume on the contrary that there is some
n € w such that f | [A(p)]” has the constant value 0. Then p IF 2 ¢ A for
every x € [A(p)]™, but this is in contradiction with the facts that the measure
U* extends U, pIF A € U*, and A(p) e U.

It now follows easily that the set of conditions of the form ((s, A), (p, (s, A)))
is dense in R * Q. Assume that ((s, A), (p, (t, A))) is an arbitrary condition in
R % Q. We have t C s. There is some ¢ < p which forces that z := s — ¢ is
contained in A. Now by shrinking A to A(q) we get that ((s, A(q)), (¢, (s, A)))
is a condition which is below ((s, A), (p, (t, A))). We will from now on work with
this dense subset of R x Q.

Now in Nj[g] build a x-tree E of conditions in Sacks(k, [\, k(A))), whose
branches will be fusion sequences, together with a sequence of ordinals (A :
B < k), each A\g < A, as follows:

Consider an enumeration (sg : 8 < k) of all possible lower parts of conditions
in R, i.e. all finite increasing sequences of ordinals less than , in which every
lower part appears cofinally often. Start building the tree E below the condition
po (po was chosen such that ((so, Ag), (po, (s0, Ag))) forces b to be a bad branch).
Assume that the tree E is built up to level 5. Then, at stage 3 of the construction
of the tree, at each node v (a condition in Sacks(x, [\, k(X)))), is associated an
X, C [AEk(N)), | Xy| < k; we will find stronger (incompatible) conditions vg and
v; which on all indices in X, equal v below level 8 (for purposes of fusion), i.e.
vo, 1 <g,x, v- (The sets X, can be chosen in different ways, the only condition
they have to satisfy is that at the end of the construction of the tree E for every
branch through the tree the union of the supports of the conditions (nodes) on
the branch is equal to the union of the corresponding X’s.) Before we start
the construction of the level 3 + 1 of the tree E we need to set some notation.



Given i € [\ k(N)), let S; denote Sacks(k, [A,i)). For a node v on level 3, let
dy = 0.t.(X,) and d, = |6” (PF12)|. Let (i¥ : € < 6,) be the strictly increasing
enumeration of X, and let i5, = sup{s? : € < d,}. For each € < 0, there are S;.-
names $¢ - (C € A+19) such that Siv IF (8¢ ¢ is the (-th node of Splitgi1(v(iY))),
where the nodes of Splitgy1(v(i ”))) are ordered canonically lexicographically
(by choosing an Sj.- name for an isomorphism between v(i?) and <%2). Let

(up : 1 < dy) enumerate o (P*12) (the §,-length sequences whose entries are
elements of #712) so that u} = (u(e) : € < d,), where each u}(e) € *T12. We
now need the following two facts:

Fact 1. Suppose that v is a node and [ < d,. We can construct a condition
r < w called v thinned through u;, denoted by (v)*, in the following manner: r |
iy = v [ 4§, for each € < &,, r(3¥) = v(37) | Seurey” F(iY,ie ) = v [ (30,10,)
and 7 | (is,, k(N) = v | (is,, k()\)), where v(i¥) | $¢.up(e) 18 the subtree of v(i?)

whose branches go through s? wr(e)”
»Ug

Fact 2. Suppose that v and r are conditions in Sacks(k, [A, k(N))) with r <
(v)*. Then there is a condition v’ such that v' <gx, v and (v')" ~ r (i.e.
()" <randr < (v)“). We say that v' is v refined through w; to .

Let (v; : j < 2°*1) be an enumeration of level 3 of the tree E and let
(Um)m<3>, _yo4n d,, De an enumeration of Y i= U, a1 {u;” : 1 < dy, }. Tn order
to construct the next level of the tree we will first thin out all the nodes on
level 3 (by considering all the pairs in Y') and then split each of them into two
incompatible nodes. The thinning out is done as follows: Consider ug and w;.
If they belong to the same node, i.e. if there is j < 2%t and [y, 1; < dy; s.t.
uy = “1 7 and u; = ul , then no thinning takes place. So assume that ug and Uy
belong to different nodes, say vj, and vj, , respectively. Use Fact 1 to construct
conditions ro; = (vj,)"° and r9 = (vj,)", i.e. thin v;, and v, through wug
and u; to 191 and 719, respectively. Now ask whether there exist extensions 7,
and 7’10 of To1 and 719, respectively, such that for some v9; < A and some Agq,
Ao, Aor, Ao, (55, Aon). (1 (55 Aon)) amd (55, Av). (i (s, ) foree
different nodes on level vo1 of 7" to lie on b. If the answer is ’yes’, use Fact 2 to
refine v;, and v;, through r(; and 7}, respectively, and continue with the next
pair: ug, ug. And if the answer is 'no’, go to the pair ug, up without refining v;,
and vj;,. The next pairs are uy, uz; uo, u3 and so on, i.e. all pairs of the form us,
Uy, for n < Zj<26+1 dy; and 6 < 7. At the limit stages take lower bounds, they
exist since the forcing is s-closed. Let Ag be the supremum of (the increasing
sequence of) vs,’s. Now extend each node v on level 3 (after thinning out the
whole level) to two incompatible conditions v, and vy, such that v, v1 <g x, v.

Let o be the supremum of Ag’s. Note that a < ), because A = (k)N
Let p be the result of a fusion along a branch through E. By the claim we
can choose Ag(p) C Ao in U such that ((so, Ao(p)), (p, (s0, Ag))) is a condition.
Extend this condition to some ((s1(p), A1(p)), (p*, (s1(p), A1 (p)))) which decides
b(e), say it forces b(a) = x,.

As level o of T has size < ), there exist limits p,q of k-fusion sequences
arising from distinct s-branches through E for which z, equals x, and s1(p)
equals s1(gq). Moreover, we can intersect A;(p) and A;(g) to get a common A;.
Say, ((515 Al)? (p*a (817A1(p)))) and ((517A1)7 (q*v (515 Al(‘])))) force b<a) =Z.



Now choose a Prikry generic C' containing (s1, A1) (and therefore containing
(50, Ag)). As b is forced by ((so, Ao), (po, (s0, Ao))) to not belong to Ny[g][C]
and ((sl,Al),( (sl,Al( 1)) extends ((s0, Ao), (po, (S0, Ao))), We can extend
((s1, A1), (p* (sl,Al( )))) to incompat. conditions ((sz,, Az, ), (p(’g*,(SQO,AQU))),
((5217‘421) (pl ’(5217‘421)))7 with _(5205A20)7 (5217A21) € C and pO 7pT* <p5
which force a disagreement about b at some level v above a.

Now extend ((s1, A1), (¢*, (51, 41(q)))) to some ((s3, A3z), (¢* ,(ss,Ad)))_ de-
ciding b(vy) with (s3, A3) in C’ Suppose w.l.o.g. that ((s3, A3), (¢**, (s3, 43)))
and ((sg,, Aa, ), (P5*, (52, Az, ))) disagree about b(7y). Also w.l.o.g. we can as-
sume that s3 D sg,.

Using the claim extend ((sg,, Az, ), (P5*, (52,5 A2, ))) to some ((s3, A3), (p***,
(s3, Ay,))) with Ay € U and p™* < pj*.

Now, for some 3 < k we have s3 = sg where sg is the gth element of the
enumeration of the lower parts (s3 is not the third element!). Since sg appears
cofinally often in the construction of the tree E, we can assume that the branches
which fuse to p and ¢ split in E at some node below level 3 and go through some
nodes vj, and vj, at level 3. It follows that for some | < d,, and k <d,, ,

r = ((s3, A5 (7)), (7)™, (33, A2)))

and

ra = (53, As((g™)" ")), (¢7)"" (53, 43))
force different nodes to lie on b at level v > «. By construction, this means that
for some n < Zj<25+1 dy; and 0 <7,

ra = (53, Asn), (5, (35, Asy)))

and
T4 = ((3[35 AV]5)) (T;75, (SB’A"‘S)))

force different nodes on level 75, (< «) of T to lie on b. Say, 6(757,) = yo and
b(’ygn) =y, respectively.

On the other side, r and ro extend ((s1, A1), (p*, (51, A1(p)))) and ((s1, A1),
(¢*, (s1,A1(q)))), respectively. Therefore we have that r; and ry also force
bla) = x.

Note that (p***)u”" < 75, and ()" < Ty Since any two R * Q condi-
tions with the same lower part and compatible Sacks conditions are compatible,
we have that ry || 73 and 7y || r4. Let ((s3, B'), (B, (s3,B’))) be a common lower
bound of r; and r3, and let ((s3, B”), (g, (s3, B"))) be a common lower bound of
79 and 74. The first condition forces b(vs,) = yo and b(a) = x, and the second
condition forces b(’ygn) =y, and b(a) = .

Finally, let B := B’ N B"”. Then (s3, B) forces that yo,y1 <; « in the
ordering of the tree T, because T is a Prikry-name, i.e. all the relations between
the nodes of T are determined by the Prikry parts of the conditions above.
Contradiction. O



4 The tree property at N .o

Using a forcing notion which makes x into R, instead of Prikry forcing in the
proof of Theorem 2 one can get from the same assumptions the tree property
at N, 49, R, strong limit.

Theorem 3. Assume that V is a model of ZFC and x is a weakly compact
hypermeasurable cardinal in V. Then there exists a forcing extension of V in
which Vo has the tree property.

Proof. Let A\ > k be a weakly compact cardinal and let j : V — M be an
elementary embedding with crit(j) = &, j(k) > XA and H(\)V = H(A\)M. We
may assume that M is of the form M = {j(f)(a) :a <\, f: k> V,f €V}
First force as in Theorem 1 with P = P, x Sacks(k, \) over V to get a model
V[G][g] in which 2F = kT kT has the tree property, and & is still measurable,
i.e. there is an elementary embedding j : V[G]lg] — MIG]lg|[H][h], where
G g+ H*h is a generic subset of j(P) over M. Let M* := M|[G][g][H][h]. Note
that M* is the ultrapower of V[G|[g] (by the normal measure U induced by j),
i.e. every element in M* is of the form j(f)(k) for some f : k — VI[G][g], f €
V[G][g]- This is because every element in M* is of the form j(f)(a) for some
a< A f:k—=VIG|g], f € VIG][g], and every o < A is of the form j(g)(x) for
some g : £ — V[G][g], g € V[G][g].

Claim. Define Q' := Coll((x*+H)™" j(k))M", the forcing that collapses each
ordinal less than j(x) to (xtT1)M" using conditions of size < (kt+)". There
exists G’ in V[G][g], a generic subset of Q" over M*.

Proof of the claim. Every maximal antichain A C Q' in M* is actually in
M|G][g][H], and thus of the form o“*9*H for some j(P,)-name o in M. It
follows that A is of the form j(f)(a)%*9*# for some a < A = (x*T)™", and
some f :x — V,f € V. Since we can assume that o = j(f)(a) is in Vj)
(because |j(Px)| = j(x) and j(P,) has j(k)-c.c.), it follows that we can assume
that f:x — V.

For a fixed f: k — V. we have that Fy := {A C Q' | A maximal antichain,
A € M[G][g][H], and j(f)(a)5*9*H = A for some o < (k1T)M"} is an element
of M[G][g][H]. Therefore, since Q' is (x7++)M -distributive in M[G][g][H],
there exists a single condition p; € @’ which lies below every antichain in Fy.

Now, there are 2 = s functions f : Kk — V, in V. Enumerate them as
f1, f2, f3... We can find conditions ¢, € Q' for v < k™ such that ¢, is a lower
bound of (ps,)s<y, because M[G][g|[H]" N V[G][g] € M[G][g][H] and Q" is
(kT)V-closed in M[G][g][H]. The sequence {q, | v < st} generates a filter G’
for Q" in V[G][g], which is generic over M [G][g][H]. Here ends the proof of the
claim.

We now define in V[G][g] a T -c.c. forcing notion R(G’,U), or just R, called
Collapse Prikry, which makes & into X, and preserves the tree property on x*+
as follows: An element p of R is of the form (XN, fo, a1, f1, -, @n-1, fn—1, A, F)
where

1. Ny < a1 <--- <a,_1 <k are inaccessibles

2. fi € Coll(e;f ™", aijy1) for i <n — 1 and f,,_1 € Coll(e;} ], k)

n—1 >



3. Ae U, minA > a,_1
4. Fis a function on A such that F(«) € Coll(at1, k)
5. [F]u, which is an element of Coll((xt++)M" j(k))™", belongs to G'.

The conditions in R are ordered as follows:
(NO790>617917"'7ﬂm717gmflaBaH) S (N[)af07a17f17"'7an717fn717A7F) iff

1. m>n

2. Vi<nBi=a, g2 fi
3. BCA
4.Vi>np; €A, g; 2 F(3)
5. Va € B H(a) 2 F(a).

We often abbreviate the lower part of a condition by a single letter and write
(s, A, F) instead of (Ng, fo, a1, f1,..-s @n—1, fn—1, A, F) where |s| = n denotes the
length of the lower part. Let S denote the ’generic sequence’, i.e. the Prikry
sequence together with the generic collapsing functions.

Claim. R satisfies kT-c.c.

Proof of the claim. There are only x lower parts and any two conditions with
the same lower part are compatible, so no antichain has size bigger than x.

Claim. Let (s,A,F) € R and let o be a statement of the forcing language.
There exists a stronger condition (s’, A*, F*) with |s| = |s’| which decides o.

For a proof see [2].

Claim. Let C be a V[G][g]-generic subset of R and let (Rg, aq, ..., ay,...) be
the Prikry sequence in k introduced by R. For j € w, define R | j :=
Coll(RF+T, a1)x Coll(a] T, as) x ...x Coll(af ", a;). Then V[G][g][C] and

J—1
VIG][9][C T j] have the same cardinal structure below «; + 1, namely R, Ry, X,
al,af, 041L+,04{r+ Yy QG 1, aj_l, ajfl, aj*flﬂ aj, where C | j is the restriction
of CtoRj.

Proof of the claim. Write R as R | j« R/(R | j), where the quotient R/(R | j)
is defined in the same way as R (using only inaccessibles between «; and k).
We need to show that R/(R | j) does not add bounded subsets of a;, but this
follows immediately from the last claim.

So we proved that R makes k into N,. It remains to show that it also
preserves the tree property on x+ = \.

In order to get a contradiction suppose that there is a k*+-Aronszajn tree
in some R-extension of V[G][g]. Then in V[G] there is a Sacks(x,\) * R -
name T of size A (because Sacks(k,\) * R satisfies A-c.c.) and a condition
(p,7) € Sacks(x,A) * R which forces T to be a kTT-Aronszajn tree. Let G
be a Sacks(k, A)-name in V]G] for G’ of size A (there is such a name because
Sacks(k, A) has the A-c.c. and |Q'| = A). We can assume w.lo.g. that p
forces G/ to be generic over @)'. Recall that A is a weakly compact cardinal
in V[G]. Therefore, there exist in V[G] transitive ZF ~-models Ny, N7 of size



A and an elementary embedding k : Ng — N; with critical point A, such that
No 2 HNVIC and G, T,G € Ny.

Since g is also Sacks(k, A)-generic over Ny and the critical point of k is A, k
can be lifted to k* : No[g] — N1lg][K], where K is any Np[g]-generic subset of
Sacks(k, [A, k(N))) in some larger universe (and where Sacks(k, [\, k(A))) is the
quotient Sacks(x, k(X)) /Sacks(k, A), i.e. the iteration of Sacks(x) indexed by or-
dinals between A and k())). Consider the forcing R* := k*(R) = R(k(G'), k(U))
in N1[g][K] and choose any generic C* for it such that k*(r) € C*, where
r=7,R=RI,G =G’ Let C := (k*)"1[C*] be the pullback of C* under k*.
Then C'is an Ny|g]-generic subset of R because crit(k)=\ and R has the x*-c.c.
It follows that there is an elementary embedding k** : No[g][C] — N1[g][K][C*]
extending k*.

We have r € C. So it follows that the evaluation T of T in Ny[g][C]
is a A-Aronszajn tree. By elementarity k**(7) is a k**(\)-Aronszajn tree in
N1[g][K][C*] which coincides with T" up to level \. Hence T has a cofinal
branch b in N;[g][K][C*]. We will show that b has to belong to N1[g][C] and
thereby reach the desired contradiction!

Let us first analyse the quotient ) arising from the natural projection 7 :
Sacks(r, k(\)) * R* — RO(Sacks(k, \) * R). As in the previous section, @ is the
set of all (p*, (Ro, fo, @1, f1,eres Qn_1, fn1, A, F*)) € Sacks(k, k()\)) * R* which
are compatible with each (p, (Ro, g0s 51591+ - Bn—1, gm—1, A, F)) € g = C, that
is, either

1. p* | A is compatible with p,
2. n<m,
3. foralli<na; =06 A fil g,

4. there is ¢ < p U p* such that g IF “B,,, ..., Bm_1 C A* and F*(8;) || g; for
n<i<m’,

or
1. p* | X\ is compatible with p,
. n>m,

Cforall i <m a; =6 A fi |l g,

oG

. there is ¢ < p U p* such that ¢ IF “ap,, ...,an_1 C A and F(ai) I fi for
m<i<n’.

[Note that in both cases the condition ¢ also forces F and F* to be compatible on
a measure one set. This is because the weaker condition p (by definition) forces
J(F)(x) to be in G, and therefore, by elementarity, also forces k(j)(k(F))(x)
to be in k(G’), but k(j)(k(F))(x) is the same as k(j)(F)(x) = [F]y~, since the
trivial condition forces k(F) = F]

Equivalently, @ is the set of conditions (p*, (Ro, fo, ...,an,hfn,l,A*,F*))
in Sacks(k, [\, k()\))) * R* such that

1. p* € Sacks(k, [\, k(X))),
2. (Ng, a1...,an_1) is an initial segment of S(C) (the Prikry sequence arising

from C),

10



4+

3. the collapsing function g; : o] — ;41 arising from C' extends f;, 1 < n,

4. p* forces that A* is in U*, and that F* is a function on A* such that
F*(a) € Coll(attt k) for each a € A*,

5. for every finite subset = (B, ..., Bm—1) of S(C) and every sequence of
functions (gn, ..., gm—1) with g; C G, n < i < m, there is some extension
q of p* which forces that z is a subset of {Rg, a1, ..., 1} U A* and that
F*(3) || gi for n < i < m.

We now again argue indirectly. Assume that b is not in N [g][C], and let b
in Ni[g] be an R * Q - name for b. Identify k(T) with the R * Q - name defined
by interpreting the Sacks(k, k(\)) * R* - name k(T) in Ny as an R+ @ - name in
N1 [g} Let ((So, AQ,F()), (po, <t07A0, F()))) be an R x Q - condition fOI'Cng that
the Prikry-name T is a A-tree and that b is a branch through T not belonging
to Mi[g][C]- o

Let us take a closer look at the condition ((sg, Ao, Fo), (po, (to, Ao, Fo)))-
Say, so = (No, fo, a1, f1,..; n—1, fn—1) and to = (No, g0, 51,91, -, Bn—1, Gm—1)-
Note that the forcing @ lives in Ny[g][C], but its elements are in N;[g], so we
can assume that (po, (to, Ay, Fy)) is a real object and not just an R-name. The
condition (sg, Ag, Fy) forces (po, (to, Ao, Fo)) to be an element of Q. But this
simply means that:

1. po is an element of Sacks(k, [, k(N))),
2. (No, 1, -y Brn—1) is an initial segment of (R, a1, ..., 1),
3. g; C f; for i <m, and

4. for every finite subset x = (41, ..., ;) of {Ng, a1, ...,n_1} U Ay and every
sequence of functions (gs,,...,gs,) With gs, 2 Fo(d;) if §; > ap—_1, and
gs, 2 fi if 0; = a; (for some i < n), some extension of py forces that x is
a subset of {Ro, 81, ..., Bm_1}+ U Ag and that Fy(5;) || gs, for i < 1.

Moreover, we can assume that so = to. Namely, the following claim gives us
a nice dense subset of R * ) on which we will work from now on.

Claim. Let ((s, A, F), (p, (t, A, F))) be an arbitrary condition in R * Q. There
is a stronger condition ((s', A, F"), (p', (s', A, F))) with the property that for
each a € A" p' IF F'(a) < F(a).

Proof of the claim. Say, s is of the form (R, fo, a1, f1,...; @n—1, fn—1) and ¢ is
of the form (No,go, 51,91, Bm—1,9m-1). Let g be an extension of p which
forces that {aum, ..., a1} is a subset of A and that f; || F(ay) for m < i < n.
Extend ¢ further to ¢’ to decide F'(a;) and let f/ := f; U F(a;). Define s’ to be
<N07 Jos o, fis o ot .f'm—lv Qm, f7/7L7 ey Qp—1, f;lz—1>'

Using the fusion property of Sacks(x, [A, k(X))) we can find a condition ¢” <
q' and a ground model function F* on A with |F*(a)| < ot for each a such
that ¢” IF F(a) € Coll(at™, k) N F*(a). It follows that ¢’ forces that in
Ult(N,[g],U), the ultrapower of Ny[g] by U, ju(F)(x) € Coll(xt+, ju(k)) N
ju(F*)(k), where |ju (F*)(k)| < x*T, that is, ¢” forces that there are fewer than
xt*+ possibilities for jir (F)(k). Note that Coll(s™+, jir (k) of Ult(Ny[g], U) is
the same as Coll(xT1, jy(k)) of Ult(Nylg],U), because these two ultrapowers
agree below jy (k).
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Since Coll(T1+, ju(k)) is k1T -closed we can densely often find conditions
in Coll(,k**1,jy(k)) which are either stronger than or incompatible with all
elements in jyr (F™*)(x). Therefore we can choose some jy (F')(k) < ju(F)(k) in
G with this property, i.e. ¢ I jur(F')(x) < jus(F) (k) V jur (F")(s) L jur () (s).
But actually we have ¢" IF ju (F")(k) < ju(F)(k), because for any generic K
below ¢”, ju(F')(k) and ]U(FK)( ) can not be incompatible as k(jy(F')(k))
and k(ju(F¥)(k)) = Jrw)(F)(x) both belong to the guiding generic k(G').

It follows that ¢” forces that for some B € U,B C A, for each o € B,
¢" Ik F'(a) < F(a). Extend ¢” to some p’ deciding B.

Finally, using the claim from the previous section, shrink B to some A’ such
that every finite subset of A’ is forced by some extension of p’ to belong to A.
Then we have ((s', A", F"),(p',(s', A, F))) < ((s,A, F), (p, (t, A, F))) such that

for each v € A’ p' IF F'(a) < F(«). This proves the claim.

Now in Nj[g] build a x-tree E of conditions in Sacks(k, [\, k(A))), whose
branches will be fusion sequences, together with a sequence of ordinals (Ag :
B < k), each A\g < A, in the same way as in the last section (using the same
notation, Fact 1 and Fact 2):

Let (v; : j < 2°t!) be an enumeration of level 3 of the tree E and let
<um>m<2,<2ﬂ+1 4, be an enumeration of ¥ := UJ<29+1{“1 1 <dy,}. In order
to construct the next level of the tree we will first thin out all the nodes on
level B (by considering all the pairs in Y) and then split each of them into two
incompatible nodes. The thinning out is done as follows: Consider ug and u;.
If they belong to the same node, i.e. if there is j < 2%+ and Iy, l; < dy; st
Uy = uzf and u, = u?l", then no thinning takes place. So assume that ug and Uq
belong to different nodes, say v;, and v;,, respectively. Use Fact 1 to construct
conditions ro; = (v;,)"° and r19 = (v;,)"*, l.e. thin v;, and v;, through ug
and u; to ro; and ryp, respectively. Now ask whether there exist extensions
ry; and 71 of ro; and 710, respectively, such that for some 701 < A and some
Aot, Aro, For, Fio, A(n: Aw; Fo17 F107 ((5,8714017Fo1) (7’01, (Sﬁ,AOhFM))) and
((s3, A10, F10), (70 (85, A0, F10))) force different nodes on level yo; of 7" to lie
on b. If the answer is ’yes’, use Fact 2 to refine vj, and vj, through ry; and 1,
respectively, and continue with the next pair: ug, us. And if the answer is 'no’,
go to the pair ug, us without refining v;, and v;,. The next pairs are uy, ua; uo,
uz and so on, i.e. all pairs of the form us, u,, for n < Zj<2ﬁ+1 dy, and § < 1.
At the limit stages take lower bounds, they exist since the forcing is x-closed.
Let Ag be the supremum of (the increasing sequence of) ~s,’s. Now extend
each node v on level 8 (after thinning out the whole level) to two incompatible
conditions v, and vy, such that vp,v1 <g x, v

Let o be the supremum of A\g’s. Note that a < ), because A\ = (k)Mo
Let p be the result of a fusion along a branch through E. As before we can choose
Ao(p) € Ao in U such that ((so, Ao(p), Fo), (p, (S0, Ao, F0))) is a condition.
Extend this condition to some ((s1(p), 41(p), F1(p)), (p*, (s1(p), A1(p), F1(p))))
which decides b(«), say it forces b(a) = ).

As level a of T has size < A, there exist limits p, ¢ of x-fusion sequences aris-
ing from distinct k-branches through E for which z, equals z, and s;(p) equals
s51(q). Moreover, we can extend (s1(p), A1(p), F1(p)) and (s1(q), A1(q), F1(q))
to get a common (s1, A1, F1). Say, ((s1,A41, F1), (p%, (s1,41(p), Fi(p)))) and
((s1, A, 1), (47, (s1, A1 (), Fi () Torce b(a) = .
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Now choose a Collapse Prikry generic C' containing (s1, A1, 1) (and hence
containing (80, Ao, F())) As ((So, AQ,F()), (po, (80, Ao,Fo))) 1)) ¢ Nl [g][C] and
((s1, A1, F1), (p*, (s1, A1(p), F1(p)))) extends ((so, Ao, Fo), (Pos (80, Ao, Fp))), we
can extend ((s1, A1, F1), (p*, (s1, A1(p), F1(p)))) to two incompatible conditions,
((5207 AQO’ FQo)? (pfﬁ*, (5207 AQov FQO))) and ((5215 Ay, F21)7 (pik*v (5215 Ay, F21)))7
with (sg,, Aay, F,), (S2,,A42,,F5,) € C and p§*,pi* < p*, which force a dis-
agreement about b at some level v above a.

Now extend ((s1, A1, F1), (¢*, (s1, Al(q)7 Fy (9)))) to some stronger condition
((83, Ag, Fg), (q**, (83, A3, F3))) which decides b(’}/) with (837 A3., Fg). in C. Say,
((337 As, F3)7.(q**7 (535 As, F3))) and ((5207"4207 F2o)’ (p8*7 (5207A207 F2o))) do not
agree about b(y), and say, ss is of the form (Ro, fo, a1, f1, ..., an—1, frn—1), and
s9, is of the form (R, go, 81,91, s Bn—1, Gm—1)-

We can assume w.l.o.g. that m < n. As both (s3, As, F3) and (sz,, Aa,, Fa,)
are in C, we have that (Ng, 81, ..., Om—1) 18 an initial segment of (Rg, aq, ..., ap—1),
gi || fi for i < m, {Qm,...,an_1} C Ag,, and Fyp (a;) || fi for m < i < n. Let
fl=fiUg; for i <m, and f] := f; U Fy, (o) for m < i < n. Define s§ to be
<N07f67a17f{7"'7an*17frlzfl>‘ . . . .

Note that ((sj, Az, F3), (¢"", (s5, 43, F3))) < ((s3, A3, F3), (¢"", (s3, A3, F3)))
is also a condition.

Since {m, ..., n—1} C Ag,, there exists some p*** < p§* which forces that
{Qmy ey n_1} C Ag,. It follows that there is also some Az € U such that
((ng Aév FQo)a (p***7 (Sé, A207 FQU))) < ((3207 A205F20)7 (pg*a (5207 AQanQO)))'

Now, for some § < k we have s5 = sg where sg is the fth element of
the enumeration of the lower parts. Since sg appears cofinally often in the
construction of the tree E, we can assume that the branches which fuse to p
and ¢ split in E at some node below level 3 and go through some nodes v;, and
vj, at level 3. It follows that for some | < d,; and k <d,, ,

, (55, Azy, Fy))

s\ 2z, 90 s\ 1 90
ry = ((s5, A5((p™)™ ), Fa, ), (™)™
and
ro 1= ((s5, A((q™)" ), Fs), ((¢")™ ", (s5, A3, F3)))
force different nodes to lie on b at level v > «. By construction, this means that
for some 1 < 37 ps41 dy; and § <,

r3 = (58, Asns Fsn), (P, (58, Asn, Fon)))

and

ra = ((s5, Ayss Fys), (17,50 (88, Ans, Fis)))

force different nodes on level v5,(< «) of T to lie on b. Say, 5(7577) = yo and

b(vsn) = Y1, respectively.

On the other side, ;, and 7o extend ((s1, Ay, F1), (p*, (51, 41(p), F1(p))))
and ((s1, A1, F1), (¢*, (s1, Al(q), Fl(q)))), respectively. Therefore we have that
r1 and 7y also force b(a) = .

Note that (p***)u™" < T, and ()w" < Ty Since any two R x Q condi-
tions with the same lower part and compatible Sacks conditions are compatible
(this follows by the same arguments used in the proof of the last claim), we have
that 71 || 75 and 7o || r4. Let ((s§, B, H'), (P, (s5, B', H'))) be a common lower
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bound of 71 and 73, and let ((s5, B”, H"), (g, (s, B", H"))) be a common lower
bound of 75 and r4. The first condition forces b(vs,) = yo and b(a) = z, and
the second condition forces b(ys,) = y1 and b(a) = z.

Finally, let B := B'N B"” and H := H' N H". Then (s, B, H) forces that
Yo, Y1 <4 = in the ordering of the tree T, because T is a Collapse Prikry-name,
i.e. all the relations between the nodes of T' are determined by the Collapse
Prikry parts of the conditions above. Contradiction. O

Open questions

1. What is the consistency strength of X, strong limit with the tree property
at N, 427 [The best known lower bound is a weakly compact A such that
for each n < w there exists K < A with o(k) = k"]

2. What is the consistency strength of the tree property at every even suc-
cessor cardinal?

3. Is it consistent with ZFC to have the tree property at each R,,, 1 < n < w,
and Nw+2?

References

[1] N. Dobrinen, S. Friedman. The consistency strength of the tree property at
the double successor of a measurable. To appear in Fundamenta Mathemat-
icae.

[2] M. Gitik. The negation of SCH from o(rk) = xT. Annals of Pure and
Applied Logic (1989), Vol. 43, 209-234.

[3] A.Kanamori. Perfect set forcing for uncountable cardinals. Annals of Math-
ematical Logic (1980), Vol. 19, 97-114.

[4] J. Cummings, M. Foreman. The tree property. Advances in Mathematics
(1998), Vol. 133, 1-32.

[5] U. Abraham. Aronszajn trees on Ry and Ng. Annals of Pure and Applied
Logic (1983), Vol. 24, 213-230.

[6] M. Foreman, M. Magidor, R. Schindler. The consistency strength of suc-
cessive cardinals with the tree property. Journal of Symbolic Logic (2001),
Vol. 66, 1837-1847.

[7] M. Magidor, S. Shelah. The tree property at successors of singular cardinals.
Archive for Mathematical Logic (1996), Vol. 35, 385-404.

14



