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INFINITARY LOGIC AND 0#

Sy D. Friedman*

In this paper we use infinitary model theory together with some ideas from
Jensen coding (see Beller-Jensen-Welch [82]) to establish a perfect set
theorem for H; sets of reals. Assume throughout that O# exists. If
RS w then we let IR denote the canonical Silver indiscernibles for L(R).
It follows from either Paris' work (Paris [74]) or the Covering Theorem (Devlin-
Jensen [74]) that if Of ¢ L(R) then R exists and in fact R¥ € L(R,0%).

DEFINITION Suppose 'k > y are uncountable-cardinals. Then CC« is CUB ™ "
in _(k, if C is closed unbounded (CUB) in kx and Cny 1is CUB in ¥.

DEFINITION Suppose « > y are uncountable cardinals and R 1is a real. Then
XSk is k-indiscernible® jf for any formula ¢(R,v],...,vk) and k-tuples
§7 <eve< dpy Ja<e..<j, from X, LR) FE ¢(Ryiqsecesiy) +—= ¢{R,J7seerdy).
1 k* Y1 k R 1 k 1 R k
X s almost k-indiscernible” at (k,y) if XN C is k-indiscernible™ for
some constructible C which is CUB in (x,y).
We wish to consider reals which preserve k-indiscernibility in a certain

sense.

DEFINITION Suppose Kk > y are uncountable cardinals and R 1is a real. Then
R preserves k-indiscernibles at x if X k-indiscernible, X C k,X construc-
tible — X k-indiscernible®. R weakly preserves k-indiscernibles at (x,v)

if X k-indiscernible, X € k, X constructible —— X almost k-indiscernib]eR

at  (k,v).

REMARK It is clear that if R weakly preserves k-indiscernibles at (x,y)

then of ¢ L(R); thus R exists and all uncountable cardinals belong to 1R,
It follows that R weakly preserves k-indiscernibles at (x',y') for all

A pairs of uncountable cardinals «' > y'.
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DEFINITION R weakly preserves k-indiscernibles if R weakly preserves k-

indiscernibles at (x,y) for some (and hence any) pair of uncountable
cardinals «x > v.

The following is our main result.

THEOREM  Suppose A is a H; set of reals containing a nonconstructible real
which weakly preserves k-indiscernibles for infinitely many k. Then A
contains a perfect closed subset.

COROLLARY Suppose R is a H;-singleton which weakly preserves k-indiscern-
ibles for infinitely many k. Then R 1is constructible,

Solovay has conjectured that there is a nonconstructible H;-sing1eton R
such that 0% & L(R). :

Qur first lemmas concern the indiscernible preservation hypothesis in the
theorem. A class X € ORD 1is amenable if XnNna € L for all o € ORD.

LEMMA 1 For any - k there exists an amenable k-indiscernible Ik € ORD such
that ICI,.

PROOF  For any vy € ORD let 1¥<...<i1 be the first k elements of I
greater than y. Let X = {y| For all i <y and all ¢(x,x],...,xk),

L = o(i,v,idse. i) <= o(i,i],...,i))}. Note that 1< X and that X is
amenable. Now suppose that Y1<e <Yy is an increasing sequence from X and
choose 1'1<...<1‘k from I so that 11 > Y- Then for any o,

L = ¢(Y]:-'-9Yk) — ¢(Y]""’Yk-]’ik) — ¢(Y1""’Yk-2’ik-1’ik)
—_— ¢(y1,i2,...,ik) — ¢(i1,...,ik), by indiscernibility and the
definition of X. So any two increasing k-tuples from X realize the same

In the definition of “R weakly preserves k-indiscernibles at (k,y)" we

‘type and we are done.

now drop the assumption that « >y are true cardinals; the same definition
applies if « > y are arbitrary L{R)-uncountable L(R)-cardinals.

LEMMA 2  Suppose that R weakly preserves k-indiscernibles. Then there exists
an amenable X C ORD such that I € XU a for some a < R and « >y in

X — R weakly preserves k-indiscernibles at («,y). Moreover X can be
chosen independently of k.

PROOF Let I2 be as in Lemma 1 where k = 2., Now for each « € IR we can
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choose a constructible CUB C. S« sothat I, n CK is 2-indiscernib1eR.

Assume that CK is chosen to be L-Teast with this property. Then by indis-
cernibility « <’ in IN——C =C,nx and hence X =I,nC fis 2-
indiscernible® where ¢ = U_{CKIK € IR}. Also 1R € C and hence x >y in
X — R weakly preserves k-indiscernibles at (ik,y).

To complete the proof we need only show that I ¢ IR U for some ¢ < ¥q.
But note that if we replace 2 by k in the above argument we obtain
x(k) 2 ® 5o that X{k) is amenable. Now for each k choose a countable o
so that X(k) 2 I-ak. This is possible as indiscernibility implies that
X(k) > I-oy for some o and then we can get oy to be countable in L(R?)
by reflection. Finally let o = U{aklk € w}. Then I c ( Q X(k)) U a yet
Q X (k) must equal 1R since it is a class of R-indiscernibles. |

We will actually need some finer information about the classes Ik in

Lemma 1 and X in Lemma 2. This is captured by the following definition.

DEFINITION Y € ORD is special amenable if for some term t and countable
i1<...<1'n in I we have that i < i€l —>Y ni= t(i],...,in,i,j1,...,jm)
whenever i < Jp<e. Jp belong to I. We refer to i],...,in as the
parameters for Y. , :

Any amenable Y C ORD 1is of the above form if the restriction that the
parameters i]<...<in be countable is dropped. The proofs of Lemmas 1,2 show:

LEMMA 3 Ik as definied in Lemma 1 is special amenable and X 1in Lemma 2 can
be chosen to be special amenable.

We are now prepared to turn to the main ideas of the proof of the Theorem.

INFINITARY LOGIC

Let L' denote the language of set theory augmented by a new symbol a
for each a€ L and a unary predicate R (for denoting a real). We shall work
with the following base theory TO’ vformu]ated in the logic L;w : T0 consists
of ZFC + V = L(R) + ¥x(R(x) — x € w) + Diagram(L) = {¥x(x € a —— bg; X=
b)la € L} + {R weakly preserves k-indiscernibles at (k,y) for infinitely

many k|k >y in X}, where X is a previously fixed special amenable class

containing I-a for some a< R].

Also let L be obtained from L' by discarding constants a for a ¢ w.
We shall establish a completeness theorem for suitable theories in the fragment
of L«w defined by L.
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DEFINITION S & me N L 4is suitable if S is a special amenable class of
quantifier-free sentences consistent (in infinitary logic) with TO'

EXAMPLE If R s a real such that R weakly preserves k-indiscernibles for
infinitely many k at (k,y)} for all « >y in X then any H; property
true of R can be expressed by a suitable collection of sentences.

The following is the key fact.

MAIN LEMMA If S s suitable then S has a model. Moreover there is a
countable ordinal o such that S has a model definable over L(O#,T) when-
ever T Cw 1is a counting of a.

It will be easy to estab115h>the‘Theorem, using the proof of the Main
Lemma. The proof of the Main Lemma is based on a Henkin-style construction in
w steps. This construction produces an increasing sequence S0 [« S]g ... of
suitable classes of sentences so that S0 = S and whenever ¢ 1is a quantifier-
free sentence of me N L then for some n, ¢ € Sn or ~¢ € Sn‘ In addition
if ¢ 1is a disjunction v@ and ¢ € Sn then ¢ € Sm for some Y € ¢ and
m € w. Given these properties we can define R = {n € w|R(n) € S for some m}
and then an easy induction shows that for quantifier-free ¢ € wa nL,
¢ € U{Sn[n € w} iff L(R) &= ¢ when a 1is interpreted as a and R is inter-
preted as R.

Our strategy for arranging the preceding properties of the Sn's is based
upon Jensen's construction of a real R which is cardinal-preserving but not
set-generic over L (see section 4.4 of Beller-Jensen-Welch [82]). We shall
define a certain countable indiscernible i and then build the S,'s so that
whenever i <« € I,K* = least element of 1 greater than x and ¢ is a
quantifier-free sentence of Lt*w N Skolem hull {(x vV {K,i],...,in}) then for
some quantifier-free ¢ € LKw, Sn+] contains the sentence ¢ «—— y (where

i],...,i are distinct indiscernibles greater than «). It follows that for

any quanzifier-free (= me NnL= Ltm there exists n,P so that

(¢ —— ) € Sn and ¢ is a quantifier-free sentence of L%w. In addition

a counting of i will be used to provide a method of deciding and choosing dis-
juncts for quantifier-free sentences of L%w in w steps.

Thus the main point is to show that «k-many sentences in Lt*w can be
simultaneously "reduced” to equivalent sentences in Ltw , for all ke I-i,
This 1s where weak k-indiscernible preservation is used. We shall also make use
of Shelah's Strong Covering property to handle disjunctions.

We now define i. As TO,S are special amenable we can choose countable

1]<...<i from I and terms tgss so that for j < j]<...<j in I,j»> 1

n m we

n
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have that Ty N Lj = to(i],...,in,j,j],...,jm), s N Lj = 5(11,--.in,5,j1,-~-.jm)
Then i s the least element of I greater than in' Note that i s
countable and i < k€ I — k€ X. Also choose a listing dgrdysee- of
L%w in an w-sequence.
We can now define the desired sequence S0 = S1§ ... of suitable classes
of sentences. Let S, equal S. Assuming S, _, has been defined we now
define Sk' Each Sk will be defined so as to be special amenable with
parameters less than i.

Pick «€ 1, k>1 and let K* = least element of I greater than «.
As «k,k* € X, T0 proves that R weakly preserves g-indiscernibles at
(c*,k) for infinitely many &. Define 2>k,3 to be least so that T&(K) is
consistent where T&(K) = T0 ¥ Sk-] U {R weakly preserves g-indiscernibles
at («*,k)} and then choose Cy to be the L-least CUB subset of « such
thatR Ti(x) is consistent where Te(k) = Tg VU §, 4 UWI, n €, 1s g-indiscern-
ible=} and I, 1is defined as in Lemma 1. -

Note that by indiscernibility, i <k <% in I — CE = Ck Nk and
hence Ty s consistent where T, =TqUS, ;u{I, nC N8 is g-indiscern-
ibleR|a € ORD} and C = Vi, i < ke I}, Also Ty is special amenable with
parameters less than i and I-i C Ck'

Suppose now that ¢ 1is a quantifier-free sentence of LL

o such that for
some  Kkq<...<k, in I, N C, and term t we have that ¢ = t{yakyaeeeaky)
where vy < Ky and ¢ € Lt o In this case we say that "¢* is defined". Now

let «xJi<...<c! be the first & elements of I, N C,_ greater than and
1 2 2 vk Y

define ¢* = t(Y,K¥,...,K1) where t,K],...,KZ,Y as above are chosen to be

L-least. Set §k = {¢ +— ¢*|¢* {is defined} U S, ;.
To see that T0 v §k is consistent it suffices to show that TE proves
every sentence in §k. This is a consequence of the following.

CLAIM T; proves that Iz N Ck is strongly l-indiscernibleg: Whenever

K1<...<K£,E1<... K, are from Iz nC, and y is less than both Ky and Eﬁ

then for all ¢(B,x0,...,xz) we have that T; F——-¢(3,1,K],...,K£)

- ¢(B_915E] seen ’El)'

PROOF OF CLAIM Note that T; proves that « is inacceséib]e, whenever

K€ I, N Cy. Argue now in T!. Suppose ¢(R,Y,K],...,K2) —— ¢(R’Y;§"';§,%
Pick j 1least so that K ¥ E& and assume that K < E&. If

¢(R,Y,$l,...,Kj,25+],...,zi) ——— ¢(R,y,E},...,Ei) then we can replace

Kysenesi, by K],...,Kj,25+],...,Ei, thereby increasing the first place at

which the sequence differs from STIRRELE Continuing in this way if necess-

ary we see that we can in fact assume that KyseeosK differs from E],...,E

2 L
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th place k., < K;.

only at the j 5 3 : :

Now we can also assume that I2 nCy is unbounded in K41 E_w as by
indiscernibility if ¢(R,Y,K1,...,K2) *1f—+ ¢(R,Y,K],...,Kj_],?j,Kj+1,...,Kl)
for some v < Ky then the same is true if Kjqpoeee oKy is replaced by any
larger (2-j)-tuple from I, N Cy. (A1so note that Il N C, contains many of
its 1imit points as it contains I-i.) Now Tlist the elements of Il al Ck
between Kj_] afﬁ Kj+] as 60 < 6]<;:. and for a < B < Kj+1
fla,B) = 1S?st Y<K, such that ¢(R,Y,K],...,Kj_],ﬁa,Kj+],...,K2)
<~ ¢(R,Y,K],...,Kj_1,5B,Kj+],...,K2). This is possible by indiscernibility.

But by the Erdis-Rado Theorem there must be a homogeneous set for the partition

define

f of cardinality > 3, which is impossible. This proves the Claim.

The consistency of T0 U §k is thus established. We now take steps to
handle disjunctions by introducing a refinement of the above construction.
Choose k€ I, i <k and let Hk(K) = Skolem hull{x U{K,K],...,Kk}) n LK]
where K < Ky<...<k belong to I. Note that Hk(K) is defined independently
of the choice of Kq<e oo <Ky e Now as T0 proves Shelah's Strong Covering
property (see Shelah [82]) we can choose Mk(n) € LK] to be L-least so that
Hk(K) [ Mk(K), Mk(K) has L-cardinality « and TyU S, , is consistent with
the sentence: M (<) = NN L where REN and N isa Zl-e1ementary submode1
of L(R). Let Tk(K) be obtained by adding this sentence to Ty U Sk-1'

Now pick vy <k, aterm t and k< SETERESS from I so that

Mk(K) = t(Y,K,K1,...,KZ). As K,K+ € X we know thgt To Proves that R weak-
1y preserves m-indiscernibles at §K+,K) for some m > ¢. So choose m > g so
that TK(K) is consistent where Tﬁ(K) = Tk(K) U {R weakly preserves m-indis-
cernibles at §K+,K2}. Then let CE c <t be L-least so that CE is CUB in
(K+,K) and T;'(K) is consistent where Ti'(K) = TE(K) v {Im N CE is m-indis-
cerniblel}, -

Note that we can choose « < Ky<ee <Ky in 1 so that in fact
Kokqsereaky € I N CE since CF is CUB in (') and T¢I. So for any
vy <K€ I,n CE Nk we have that TE'(K) proves that "Mk(E) = NN L where
ReN and N is a Z]-elementary submodel of L(R)", where Mk(E) =
t(Y,E,K],...,Kz). Moreover by indiscernibility we can choose t,y,%,m dindepen-
dently of k € I-i and obtain the consistency of Tk = T0 v Sk_1 v
{t(vskaKysenusky) = NN L where REN and N is a 11-elementary submodel
of L(R)[k <k;<...< k, belong to I N C.} where C, = U{CE Nkl € 1-i},

The point of Tk js that we can now "shrink" disjunctions in a strong
sense: Define "¢* is defined" as before using the above definition of Ck
and replacing 2 by m as defined above, In this way we obtain Sk =
{¢p +— ¢*|¢* 1is defined} and T Y §k is consistent. But now we can also

consistently adjoin the sentences {vo ~——v(é N Mk(K))lv®e Mk(K) =
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t(Y,K,K1,...,K2),K < K<< Kg'in Im‘ﬁ Ck}. Let §k denote §L together
with the above sentences. So To Y S¢ is consistent.

To obtain _Sk from sk' we must consider the sentence ¢k 1 from LL
and add it to S if Ty S U {¢,_1} fis consistent; otherwise add ~¢ ;-
Also in the former case if ¢k 1° vd then choose the L-least ¢ € ¢ so that
T0 v S U {y} is consistent and add v to Sk Finally Sk consists of all
quant1f1er-free sentences of LL which are logical consequences of TO
together with the resulting c1ass of sentences. This completes the definition
of S

5e now verify the desired properties of the Sk's, First we show that for
any quantifier-free ¢ € Ltm there exists k such that T0 1Y) Sk — ¢ or
To Y S — ~¢. We do this by induction on the least kg € I-i such that
¢ € LL o If K¢ =i then ¢ = ¢k for some k and thus by construction
e1ther¢ $& S, or ~¢€ Sk+1. Otherwise for some k ¢ = t(Y,K],...,Kk)
where vy < Ky < Ko and i < Ky<en o<k belong to I-i, Now KyseesKy belong
to Im N Ck for all m so by construction Sk contains the sentence
¢ ~—> ¢* where ¢* = t(Y,K¥,...,KI) and KT<...<KE are less than «y. Thus

K gx S Ky and so by induction TyU S, - ¢* or ToYs, j— ~¢* for some
For 2 z'k we have T,US, — ¢ or Tg U $, =~9.

We also argue that if ¢ = v¢ and T0 v Sk +— ¢ then To Y S — v
for some Y€ &, ¢ € w., Again this is shown by induction on «,. If K¢ =3
then this follows directly from the construction. Otherwise choose k so that
To Y S — ¢ and ¢ = t(Y,K,K],...,Kk) where vy < k < Kp and
i<k« Ky<ow o <y belong to I-i. Thus Sk contains the sentence ¢ «— ¢*
where ¢* = t(Y,KY,K¥,...,KZ) and «f < K¥<...<KK in I 0C, are less than
9. Write ¢* = vo*. Now by construction TO U Sk proves )
¢ — v(e* A M (")) as ¢* € H (') c M (V). By induction Ty U S, . |— y*
for some y* € ¢* N Mk(KY) and some k' > k. Now we can write
y* = E(?}K¥,...,K%) for some Y < K¥ and T since Mk(<¥) C Skolem hull of
kY] v {K¥,...,K%}). (Recall the requirement m > 2 in the construction.)
Finally we see that Sk contains the sentence y¥* «——— y where
Y= f(?,K],...,Km) and y € 0. Thus TyU S, — w for some y € .
We can now complete the proof of the Main Lemma. Define R =

{anO v, — R(n) for some m}. We show by induction on quantifier-free
¢ €Lt that L(R) |= ¢ iff T,usS |— ¢ for some m. If ¢ is atomic
then ¢ 1is of the form n€m,n=m or R(n) and so the result is clear by
" the definition of R (and the consistency of To v Sm for all m). If ¢ =~y
then the result follows by induction from the consistency of TO v Sm for each
m and the completeness of U{T0 U Smlm € wl. If ¢ = vdé then the result
follows by induction and the fact demonstrated in the preceding paragraph. We
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have shown that § = S0 has a model. Also note that there is such a model
definable over L(O#,T) whenever T Cw 1is a counting of 1i. This completes
the proof of the Main Lemma.

Finally we usé the argument for the Main Lemma to prove the Theorem.
Choose a real R € A which is nonconstructible and which weakly preserves k-
indiscernibles for infinitely many k. By Lemmas 1-3 choose a special amenable
class X containing I-a for some countable o so that R weakly preserves
k-indiscernibles at (k,y) for infinitely many k, whenever « >y belong to
X. We consider the suitable class S of sentences which express "R € A,R is
nonconstructible". Now given a counting T of a particular countable ordinal
a, the proof of the Main Lemma provides the construction of a real R in
L(O#,T) such that L(R) 1is a model of S. However note that as TgUs —R
is nonconstructible there is the freedom at any stage k of the construction
to consistently adjoin either of the sentences “"R(n)", "~R(n)" to Sk, for
some n € w. Thus in this way it is easy to build a perfect binary tree to
possible constructions, any branch through which yields a distinct model of S
and hnece a distinct element of A, The collection of all reals produced in
this way constitutes a perfect closed subset of A. This completes the proof
of the Theorem,

POSTSCRIPT 1) There is a nodification of the condition "R weakly preserves k-
indiscernibles for infinitely many k" which can be substituted into the state-
ment of our Theorem. For A,Y C N1 we say that Y indiscernibly defines A
if for some &, Y dis A-indiscernible and for some term t, some ¥y < Ryt
ANy, = t(Y,y],...,yl) for all Y1y in Y, y < yp. Thus if AelL

then Iz indiscernibly defines A for sufficiently large 2. Now the new
condition on R 1is: (%) For infinitely many k, X k-indiscernible,

X € L — there exists AcC R1,A € L such that XnY is k-indiscernib]eR
whenever Y C N],Y €L and Y indiscernibly defines A.

2) The advantage of the preceding property (x) is that we can show: If R
Jensen codes an amenable class then R satisfies (%), Thus any amenable
forcing for producing a nonconstructible H; singleton must be somewhat
different than Jensen coding.
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