Contemporary Mathematics Volume 31, 1984

INFINITARY LOGIC AND 0#

Sy D. Friedman^{*}

In this paper we use infinitary model theory together with some ideas from Jensen coding (see Beller-Jensen-Welch [82]) to establish a perfect set theorem for π_2^1 sets of reals. Assume throughout that $0^{\#}$ exists. If $R \subseteq \omega$ then we let I^R denote the canonical Silver indiscernibles for L(R). It follows from either Paris' work (Paris [74]) or the Covering Theorem (Devlin-Jensen [74]) that if $0^{\#} \notin L(R)$ then $R^{\#}$ exists and in fact $R^{\#} \in L(R, 0^{\#})$.

<u>DEFINITION</u> Suppose $\kappa > \gamma$ are uncountable cardinals. Then $C \subseteq \kappa$ is <u>CUB</u> in (κ,γ) if C is closed unbounded (CUB) in κ and $C \cap \gamma$ is CUB in γ .

<u>DEFINITION</u> Suppose $\kappa > \gamma$ are uncountable cardinals and R is a real. Then $X \subseteq \kappa$ is <u>k-indiscernible</u>^R if for any formula $\phi(R, v_1, \dots, v_k)$ and k-tuples $i_1 < \dots < i_k, j_1 < \dots < j_k$ from X, $L(R) \models \phi(R, i_1, \dots, i_k) \longleftrightarrow \phi(R, j_1, \dots, j_k)$. X is <u>almost k-indiscernible</u>^R at (κ, γ) if $X \cap C$ is k-indiscernible^R for some constructible C which is CUB in (κ, γ) .

We wish to consider reals which preserve k-indiscernibility in a certain sense.

<u>DEFINITION</u> Suppose $\kappa > \gamma$ are uncountable cardinals and R is a real. Then <u>R preserves k-indiscernibles at κ </u> if X k-indiscernible, $X \subseteq \kappa, X$ constructible $\longrightarrow X$ k-indiscernible^R. R <u>weakly preserves k-indiscernibles at (κ, γ) </u> if X k-indiscernible, $X \subseteq \kappa$, X constructible $\longrightarrow X$ almost k-indiscernible^R at (κ, γ) .

<u>REMARK</u> It is clear that if R weakly preserves k-indiscernibles at (κ,γ) then $0^{\#} \notin L(R)$; thus $R^{\#}$ exists and all uncountable cardinals belong to I^{R} . It follows that R weakly preserves k-indiscernibles at (κ',γ') for <u>all</u> pairs of uncountable cardinals $\kappa' > \gamma'$.

*This research was supported by NSF Grant #MCS 7906084.

© 1984 American Mathematical Society 0271-4132/84 \$1.00 + \$.25 per page

99

<u>DEFINITION</u> R weakly preserves k-indiscernibles if R weakly preserves k-indiscernibles at (κ, γ) for some (and hence any) pair of uncountable cardinals $\kappa > \gamma$.

The following is our main result.

<u>THEOREM</u> Suppose A is a Π_2^1 set of reals containing a nonconstructible real which weakly preserves k-indiscernibles for infinitely many k. Then A contains a perfect closed subset.

<u>COROLLARY</u> Suppose R is a Π_2^1 -singleton which weakly preserves k-indiscernibles for infinitely many k. Then R is constructible.

Solovay has conjectured that there is a nonconstructible Π_2^1 -singleton R such that $0^{\#} \notin L(R)$.

Our first lemmas concern the indiscernible preservation hypothesis in the theorem. A class $X \subseteq ORD$ is amenable if $X \cap \alpha \in L$ for all $\alpha \in ORD$.

<u>LEMMA 1</u> For any k there exists an amenable k-indiscernible $I_k \subseteq ORD$ such that $I \subseteq I_k$.

<u>PROOF</u> For any $\gamma \in \text{ORD}$ let $i_1^{\gamma} < \ldots < i_k^{\gamma}$ be the first k elements of I greater than γ . Let $X = \{\gamma \mid \text{ For all } i < \gamma \text{ and all } \phi(x, x_1, \ldots, x_k),$ $L \models \phi(i, \gamma, i_2^{\gamma}, \ldots, i_k^{\gamma}) \longleftrightarrow \phi(i, i_1^{\gamma}, \ldots, i_k^{\gamma})\}$. Note that $I \subseteq X$ and that X is amenable. Now suppose that $\gamma_1 < \ldots < \gamma_k$ is an increasing sequence from X and choose $i_1 < \ldots < i_k$ from I so that $i_1 > \gamma_k$. Then for any ϕ , $L \models \phi(\gamma_1, \ldots, \gamma_k) \longleftrightarrow \phi(\gamma_1, \ldots, \gamma_{k-1}, i_k) \longleftrightarrow \phi(\gamma_1, \ldots, \gamma_{k-2}, i_{k-1}, i_k)$ $\longleftrightarrow \phi(\gamma_1, i_2, \ldots, i_k) \longleftrightarrow \phi(i_1, \ldots, i_k)$, by indiscernibility and the definition of X. So any two increasing k-tuples from X realize the same type and we are done.

In the definition of "R weakly preserves k-indiscernibles at (κ,γ) " we now drop the assumption that $\kappa > \gamma$ are true cardinals; the same definition applies if $\kappa > \gamma$ are arbitrary L(R)-uncountable L(R)-cardinals.

<u>LEMMA 2</u> Suppose that R weakly preserves k-indiscernibles. Then there exists an amenable $X \subseteq ORD$ such that $I \subseteq X \cup \alpha$ for some $\alpha < \aleph_1$ and $\kappa > \gamma$ in $X \longrightarrow R$ weakly preserves k-indiscernibles at (κ, γ) . Moreover X can be chosen independently of k.

<u>PROOF</u> Let I_2 be as in Lemma 1 where k = 2. Now for each $\kappa \in I^R$ we can

100

choose a constructible CUB $C_{\kappa} \subseteq \kappa$ so that $I_2 \cap C_{\kappa}$ is 2-indiscernible^R. Assume that C_{κ} is chosen to be L-least with this property. Then by indiscernibility $\kappa < \kappa'$ in $I^R \longrightarrow C_{\kappa} = C_{\kappa'} \cap \kappa$ and hence $X = I_2 \cap C$ is 2-indiscernible^R where $C = \cup \{C_{\kappa} | \kappa \in I^R\}$. Also $I^R \subseteq C$ and hence $\kappa > \gamma$ in $X \longrightarrow R$ weakly preserves k-indiscernibles at (κ, γ) .

To complete the proof we need only show that $I \subseteq I^R \cup \alpha$ for some $\alpha < \aleph_1$. But note that if we replace 2 by k in the above argument we obtain $X(k) \supseteq I^R$ so that X(k) is amenable. Now for each k choose a countable α_k so that $X(k) \supseteq I - \alpha_k$. This is possible as indiscernibility implies that $X(k) \supseteq I - \alpha_k$ for some α_k and then we can get α_k to be countable in $L(R^{\#})$ by reflection. Finally let $\alpha = \cup \{\alpha_k | k \in \omega\}$. Then $I \subseteq (\bigcap_k X(k)) \cup \alpha$ yet $\bigcap_k X(k)$ must equal I^R since it is a class of R-indiscernibles.

We will actually need some finer information about the classes I_k in Lemma 1 and X in Lemma 2. This is captured by the following definition.

<u>DEFINITION</u> $Y \subseteq ORD$ is <u>special amenable</u> if for some term t and countable $i_1 < \ldots < i_n$ in I we have that $i_n < i \in I \longrightarrow Y \cap i = t(i_1, \ldots, i_n, i, j_1, \ldots, j_m)$ whenever $i < j_1 < \ldots < j_m$ belong to I. We refer to i_1, \ldots, i_n as the <u>parameters</u> for Y.

Any amenable $Y \subseteq ORD$ is of the above form if the restriction that the parameters $i_1 < \ldots < i_n$ be countable is dropped. The proofs of Lemmas 1,2 show:

<u>LEMMA 3</u> I_k as definied in Lemma 1 is special amenable and X in Lemma 2 can be chosen to be special amenable.

We are now prepared to turn to the main ideas of the proof of the Theorem.

INFINITARY LOGIC

Let L' denote the language of set theory augmented by a new symbol \underline{a} for each $a \in L$ and a unary predicate \underline{R} (for denoting a real). We shall work with the following base theory T_0 , formulated in the logic $L'_{\infty\omega}$: T_0 consists of ZFC + V = L(\underline{R}) + $\forall x(\underline{R}(x) \longrightarrow x \in \underline{\omega})$ + Diagram(L) = { $\forall x(x \in \underline{a} \longrightarrow \bigcup_{b \in a} x = \underline{b}) | a \in L$ } + { \underline{R} weakly preserves k-indiscernibles at (κ,γ) for infinitely many $k | \kappa > \gamma$ in X}, where X is a previously fixed special amenable class containing I- α for some $\alpha < \aleph_1$.

Also let L be obtained from L' by discarding constants <u>a</u> for $a \notin \omega$. We shall establish a completeness theorem for suitable theories in the fragment of L_{α_0} defined by L. $\underline{\text{DEFINITION}} \quad S \subseteq L_{\infty \omega} \cap L \quad \text{is suitable if } S \quad \text{is a special amenable class of} \\ \text{quantifier-free sentences consistent (in infinitary logic) with } T_{\Omega}.$

EXAMPLE If R is a real such that R weakly preserves k-indiscernibles for infinitely many k at (κ, γ) for all $\kappa > \gamma$ in X then any \prod_{1}^{1} property true of R can be expressed by a suitable collection of sentences.

The following is the key fact.

<u>MAIN LEMMA</u> If S is suitable then S has a model. Moreover there is a countable ordinal α such that S has a model definable over $L(0^{\#},T)$ whenever $T \subseteq \omega$ is a counting of α .

It will be easy to establish the Theorem, using the proof of the Main Lemma. The proof of the Main Lemma is based on a Henkin-style construction in ω steps. This construction produces an increasing sequence $S_0 \subseteq S_1 \subseteq \ldots$ of suitable classes of sentences so that $S_0 = S$ and whenever ϕ is a quantifierfree sentence of $L_{\infty\omega} \cap L$ then for some $n, \phi \in S_n$ or $\sim \phi \in S_n$. In addition if ϕ is a disjunction $v\phi$ and $\phi \in S_n$ then $\psi \in S_m$ for some $\psi \in \phi$ and $m \in \omega$. Given these properties we can define $R = \{n \in \omega | \underline{R}(\underline{n}) \in S_m \text{ for some } m\}$ and then an easy induction shows that for quantifier-free $\phi \in L_{\infty\omega} \cap L$, $\phi \in U\{S_n | n \in \omega\}$ iff $L(R) \models \phi$ when \underline{a} is interpreted as a and \underline{R} is interpreted as R.

Our strategy for arranging the preceding properties of the S_n 's is based upon Jensen's construction of a real R which is cardinal-preserving but not set-generic over L (see section 4.4 of Beller-Jensen-Welch [82]). We shall define a certain countable indiscernible i and then build the S_n 's so that whenever $i \leq \kappa \in I, \kappa^* = least$ element of I greater than κ and ϕ is a quantifier-free sentence of $L_{\kappa^*\omega}^L \cap$ Skolem hull ($\kappa \cup \{\kappa, i_1, \ldots, i_n\}$) then for some quantifier-free $\psi \in L_{\kappa\omega}^L, S_{n+1}$ contains the sentence $\phi \longleftrightarrow \psi$ (where i_1, \ldots, i_n are distinct indiscernibles greater than κ). It follows that for any quantifier-free $\phi \in L_{\infty\omega} \cap L = L_{\infty\omega}^L$ there exists n, ψ so that $(\phi \longleftrightarrow \psi) \in S_n$ and ψ is a quantifier-free sentence of $L_{i\omega}^L$. In addition a counting of i will be used to provide a method of deciding and choosing disjuncts for quantifier-free sentences of $L_{i\omega}^L$ in ω steps.

Thus the main point is to show that κ -many sentences in $L_{\kappa\star\omega}^{L}$ can be simultaneously "reduced" to equivalent sentences in $L_{\kappa\omega}^{L}$, for all $\kappa \in I$ -i. This is where weak k-indiscernible preservation is used. We shall also make use of Shelah's Strong Covering property to handle disjunctions.

We now define i. As T_0 , S are special amenable we can choose countable $i_1 < \ldots < i_n$ from I and terms t_0 , s so that for $j < j_1 < \ldots < j_m$ in I, $j > i_n$ we

have that $T_0 \cap L_j = t_0(i_1, \dots, i_n, j, j_1, \dots, j_m)$, $S \cap L_j = s(i_1, \dots, i_n, j, j_1, \dots, j_m)$. Then i is the least element of I greater than i_n . Note that i is countable and $i \leq \kappa \in I \longrightarrow \kappa \in X$. Also choose a listing ϕ_0, ϕ_1, \dots of $L_{i\omega}^L$ in an ω -sequence.

We can now define the desired sequence $S_0 \subseteq S_1 \subseteq \ldots$ of suitable classes of sentences. Let S_0 equal S. Assuming S_{k-1} has been defined we now define S_k . Each S_k will be defined so as to be special amenable with parameters less than i.

Pick $\kappa \in I$, $\kappa \ge i$ and let $\kappa^* =$ least element of I greater than κ . As $\kappa, \kappa^* \in X$, T_0 proves that <u>R</u> weakly preserves ℓ -indiscernibles at (κ^*,κ) for infinitely many ℓ . Define $\ell \ge k,3$ to be least so that $T'_k(\kappa)$ is consistent where $T'_k(\kappa) = T_0 \cup S_{k-1} \cup \{\underline{R} \text{ weakly preserves } \ell\text{-indiscernibles}$ at (κ^*,κ) and then choose C_k to be the L-least CUB subset of κ such that $T''_k(\kappa)$ is consistent where $T''_k(\kappa) = T_0 \cup S_{k-1} \cup \{\underline{R} \text{ weakly preserves } \ell\text{-indiscernibles}$ at (κ^*,κ) and then choose C_k to be the L-least CUB subset of κ such that $T''_k(\kappa)$ is consistent where $T''_k(\kappa) = T_0 \cup S_{k-1} \cup \{\underline{I}_{\ell} \cap C_k$ is $\ell\text{-indiscernibles}$ and I_{ℓ} is defined as in Lemma 1.

Note that by indiscernibility, $\mathbf{i} \leq \kappa < \overline{\kappa}$ in $\mathbf{I} \longrightarrow \mathbf{C}_{k}^{\kappa} = \mathbf{C}_{k}^{\kappa} \cap \kappa$ and hence \mathbf{T}_{k}^{κ} is consistent where $\mathbf{T}_{k}^{\kappa} = \mathbf{T}_{0} \cup \mathbf{S}_{k-1} \cup \{\mathbf{I}_{k} \cap \mathbf{C}_{k} \cap \beta$ is *l*-indiscernible^{*R*} | $\beta \in \text{ORD}$ } and $\mathbf{C}_{k} = \cup \{\mathbf{C}_{k} | \mathbf{i} \leq \kappa \in \mathbf{I}\}$. Also \mathbf{T}_{k}^{κ} is special amenable with parameters less than \mathbf{i} and $\mathbf{I} - \mathbf{i} \subseteq \mathbf{C}_{k}$.

Suppose now that ϕ is a quantifier-free sentence of $L_{\infty\omega}^{L}$ such that for some $\kappa_{1} < \ldots < \kappa_{\ell}$ in $I_{\ell} \cap C_{k}$ and term t we have that $\phi = t(\gamma, \kappa_{1}, \ldots, \kappa_{\ell})$ where $\gamma < \kappa_{1}$ and $\phi \notin L_{\kappa_{1}\omega}^{L}$. In this case we say that " ϕ^{*} is defined". Now let $\kappa_{1}^{\gamma} < \ldots < \kappa_{\ell}^{\gamma}$ be the first ℓ elements of $I_{\ell} \cap C_{k}$ greater than γ and define $\phi^{*} = t(\gamma, \kappa_{1}^{\gamma}, \ldots, \kappa_{\ell}^{\gamma})$ where $t, \kappa_{1}, \ldots, \kappa_{\ell}, \gamma$ as above are chosen to be L-least. Set $\overline{S}_{k} = \{\phi \longleftrightarrow \phi^{*} | \phi^{*} \text{ is defined} \} \cup S_{k-1}$.

To see that $T_0 \cup \overline{S}_k$ is consistent it suffices to show that $T_k^{"}$ proves every sentence in \overline{S}_k . This is a consequence of the following.

 $\underbrace{ \text{CLAIM}}_{k} \quad T_{k}^{"} \text{ proves that } I_{\ell} \cap C_{k} \text{ is strongly } \ell \text{-indiscernible}^{\underline{R}} \text{: Whenever} \\ \kappa_{1} < \ldots < \kappa_{\ell}, \overline{\kappa}_{1} < \ldots < \overline{\kappa}_{\ell} \text{ are from } I_{\ell} \cap C_{k} \text{ and } \gamma \text{ is less than both } \kappa_{1} \text{ and } \overline{\kappa}_{1} \\ \text{then for all } \phi(\underline{R}, x_{0}, \ldots, x_{\ell}) \text{ we have that } T_{k}^{"} \models \phi(\underline{R}, \underline{\gamma}, \underline{\kappa}_{1}, \ldots, \underline{\kappa}_{\ell}) \\ \longleftrightarrow \phi(\underline{R}, \underline{\gamma}, \overline{\kappa}_{1}, \ldots, \overline{\kappa}_{\ell}).$

<u>PROOF OF CLAIM</u> Note that $T_k^{"}$ proves that $\underline{\kappa}$ is inaccessible, whenever $\kappa \in I_{\ell} \cap C_k$. Argue now in $T_k^{"}$. Suppose $\phi(R,\gamma,\kappa_1,\ldots,\kappa_{\ell}) \nleftrightarrow \phi(R,\gamma,\overline{\kappa_1},\ldots,\overline{\kappa_{\ell}})$. Pick j least so that $\kappa_j \ddagger \overline{\kappa}_j$ and assume that $\kappa_j < \overline{\kappa_j}$. If $\phi(R,\gamma,\kappa_1,\ldots,\kappa_j,\overline{\kappa_{j+1}},\ldots,\overline{\kappa_{\ell}}) \longleftrightarrow \phi(R,\gamma,\overline{\kappa_1},\ldots,\overline{\kappa_{\ell}})$ then we can replace $\overline{\kappa_1},\ldots,\overline{\kappa_{\ell}}$ by $\kappa_1,\ldots,\kappa_j,\overline{\kappa_{j+1}},\ldots,\overline{\kappa_{\ell}}$, thereby increasing the first place at which the sequence differs from $\kappa_1,\ldots,\kappa_{\ell}$. Continuing in this way if necessary we see that we can in fact assume that $\kappa_1,\ldots,\kappa_{\ell}$ differs from $\overline{\kappa_1},\ldots,\overline{\kappa_{\ell}}$

 $\langle Q \rangle$

only at the jth place $\kappa_j < \overline{\kappa_j}$. Now we can also assume that $I_{\ell} \cap C_k$ is unbounded in $\kappa_{j+1} \leq \infty$ as by indiscernibility if $\phi(\mathbf{R}, \gamma, \kappa_1, \dots, \kappa_q) \leftarrow \phi(\mathbf{R}, \gamma, \kappa_1, \dots, \kappa_{i-1}, \overline{\kappa}_i, \kappa_{i+1}, \dots, \kappa_q)$ for some $\gamma < \kappa_1$ then the same is true if $\kappa_{i+1}, \ldots, \kappa_{\ell}$ is replaced by any larger (l-j)-tuple from $I_{\varrho} \cap C_k$. (Also note that $I_{\varrho} \cap C_k$ contains many of its limit points as it contains I-i.) Now list the elements of $I_g \cap C_k$ between κ_{j-1} and κ_{j+1} as $\delta_0 < \delta_1 < \dots$ and for $\alpha < \beta < \kappa_{j+1}$ define $f(\alpha,\beta) = 1east \overline{\gamma} < \kappa_1$ such that $\phi(R,\overline{\gamma},\kappa_1,\ldots,\kappa_{j-1},\delta_{\alpha},\kappa_{j+1},\ldots,\kappa_{\ell})$ $\leftarrow / \rightarrow \phi(R, \overline{\gamma}, \kappa_1, \dots, \kappa_{i-1}, \delta_B, \kappa_{i+1}, \dots, \kappa_k)$. This is possible by indiscernibility. But by the Erdüs-Rado Theorem there must be a homogeneous set for the partition f of cardinality \geq 3, which is impossible. This proves the Claim.

The consistency of $T_0 \cup \overline{S}_k$ is thus established. We now take steps to handle disjunctions by introducing a refinement of the above construction. Choose $\kappa \in I$, $i \leq \kappa$ and let $H_k(\kappa) = Skolem hull(\kappa \cup \{\kappa, \kappa_1, \dots, \kappa_k\}) \cap L_{\kappa_1}$ where $\kappa < \kappa_1 < \ldots < \kappa_k$ belong to I. Note that $H_k(\kappa)$ is defined independently of the choice of $\kappa_1 < \ldots < \kappa_k$. Now as T₀ proves Shelah's Strong Covering property (see Shelah [82]) we can choose $M_k(\kappa) \in L_{\kappa_1}$ to be L-least so that $H_k(\kappa) \subseteq M_k(\kappa), M_k(\kappa)$ has L-cardinality κ and $T_0 \cup S_{k-1}$ is consistent with the sentence: $M_k(\kappa) = N \cap L$ where $\underline{R} \in N$ and N is a $\dot{\Sigma}_1$ -elementary submodel of L(<u>R</u>). Let $T'_{k}(\kappa)$ be obtained by adding this sentence to $T_{0} \cup S_{k-1}$.

Now pick $\gamma < \kappa$, a term t and $\kappa < \kappa_1 < \ldots < \kappa_\ell$ from I so that $M_{k}(\kappa) = t(\gamma,\kappa,\kappa_{1},\ldots,\kappa_{2})$. As $\kappa,\kappa^{+} \in X$ we know that T_{0} proves that <u>R</u> weakly preserves m-indiscernibles at (κ^+,κ) for some $m > \ell$. So choose $m > \ell$ so that $T_k^{"}(\kappa)$ is consistent where $T_k^{"}(\kappa) = T_k^{'}(\kappa) \cup \{\underline{R} \text{ weakly preserves m-indiscernibles at } (\kappa^+,\kappa)\}$. Then let $C_k^{\kappa} \subseteq \kappa^+$ be L-least so that C_k^{κ} is CUB in (κ^+,κ) and $T_k^{"'}(\kappa)$ is consistent where $T_k^{"'}(\kappa) = T_k^{"}(\kappa) \cup \{I_m \cap C_k^{\kappa} \text{ is m-indis-}$ cernible^K}.

Note that we can choose $\kappa < \kappa_1 < \ldots < \kappa_{\varrho}$ in I so that in fact $\kappa, \kappa_1, \ldots, \kappa_l \in I_m \cap C_k^{\kappa}$ since C_k^{κ} is CUB in (κ^+, κ) and $I \subseteq I_m$. So for any $\gamma < \overleftarrow{\kappa} \in I_m \cap C_k^{K'''} \cap \kappa$ we have that $T_k''(\kappa)$ proves that $M_k(\overline{\kappa}) = N \cap L$ where <u>R</u> \in N and N is a \sum_{1} -elementary submodel of $L(\underline{R})^{"}$, where $M_{k}(\overline{\kappa}) =$ $t(\gamma, \overline{\kappa}, \kappa_1, \dots, \kappa_{\varrho})$. Moreover by indiscernibility we can choose t, γ, ℓ, m independently of $\kappa \in I-i$ and obtain the consistency of $T_k = T_0 \cup S_{k-1} \cup S_{k-1}$ $\{t(\gamma, \underline{\kappa}, \underline{\kappa}_1, \dots, \underline{\kappa}_q) = N \cap L \text{ where } \underline{R} \in N \text{ and } N \text{ is a } \sum_{1} -e \text{lementary submodel} \}$ of $L(\underline{R})[\kappa < \kappa_1 < \ldots < \kappa_k$ belong to $I_m \cap C_k$ where $C_k = \bigcup \{C_k^{\kappa} \cap \kappa | \kappa \in I-i\}$.

The point of T_k is that we can now "shrink" disjunctions in a strong sense: Define " ϕ^* is defined" as before using the above definition of C_k and replacing ℓ by m as defined above. In this way we obtain \overline{S}_{k} = $\{\phi \longleftrightarrow \phi^* | \phi^* \text{ is defined}\}\ \text{and}\ T_k \cup \overline{S}_k \text{ is consistent. But now we can also}$ consistently adjoin the sentences $\{v\phi \leftrightarrow v(\phi \cap M_{\mu}(\kappa)) | v\phi \in M_{\mu}(\kappa) =$

 $t(\gamma,\kappa,\kappa_1,\ldots,\kappa_2),\kappa<\kappa_1<\ldots<\kappa_2 \text{ in } I_m\cap C_k\}. \text{ Let } \overline{S}_k \text{ denote } \overline{S}_k \text{ together with the above sentences. So } T_0\cup\overline{S}_k \text{ is consistent.}$

To obtain S_k from \overline{S}_k we must consider the sentence ϕ_{k-1} from $L_{i\omega}^L$ and add it to \overline{S}_k if $T_0 \cup \overline{S}_k \cup \{\phi_{k-1}\}$ is consistent; otherwise add $\sim \phi_{k-1}$. Also in the former case if $\phi_{k-1} = v\Phi$ then choose the L-least $\psi \in \Phi$ so that $T_0 \cup \overline{S}_k \cup \{\psi\}$ is consistent and add ψ to \overline{S}_k . Finally S_k consists of all quantifier-free sentences of $L_{\infty\omega}^L$ which are logical consequences of T_0 together with the resulting class of sentences. This completes the definition of S_{μ} .

We now verify the desired properties of the S_k 's. First we show that for any quantifier-free $\phi \in L^L_{\infty\omega}$ there exists k such that $T_0 \cup S_k \longmapsto \phi$ or $T_0 \cup S_k \longmapsto -\phi$. We do this by induction on the least $\kappa_{\phi} \in I$ -i such that $\phi \in L^L_{\kappa_{\phi}\omega}$: If $\kappa_{\phi} = i$ then $\phi = \phi_k$ for some k and thus by construction either $\phi \in S_{k+1}$ or $\neg \phi \in S_{k+1}$. Otherwise for some k $\phi = t(\gamma, \kappa_1, \ldots, \kappa_k)$ where $\gamma < \kappa_1 < \kappa_{\phi}$ and $i \le \kappa_1 < \ldots < \kappa_k$ belong to I-i. Now $\kappa_1, \ldots, \kappa_k$ belong to $I_m \cap C_k$ for all m so by construction S_k contains the sentence $\phi \longleftrightarrow \phi^*$ where $\phi^* = t(\gamma, \kappa_1^{\gamma}, \ldots, \kappa_k^{\gamma})$ and $\kappa_1^{\gamma} < \ldots < \kappa_k^{\gamma}$ are less than κ_1 . Thus $\kappa_{\phi^*} \le \kappa_1$ and so by induction $T_0 \cup S_k \longmapsto \phi^*$ or $T_0 \cup S_k \longmapsto -\phi^*$ for some . For $k \ge k$ we have $T_0 \cup S_k \longmapsto \phi$ or $T_0 \cup S_k \longmapsto -\phi$.

We also argue that if $\phi = v\phi$ and $T_0 \cup S_k \vdash \phi$ then $T_0 \cup S_\ell \vdash \psi$ for some $\psi \in \phi$, $\ell \in \omega$. Again this is shown by induction on κ_{ϕ} . If $\kappa_{\phi} = i$ then this follows directly from the construction. Otherwise choose k so that $T_0 \cup S_k \vdash \phi$ and $\phi = t(\gamma, \kappa, \kappa_1, \dots, \kappa_k)$ where $\gamma < \kappa < \kappa_{\phi}$ and $i \leq \kappa < \kappa_1 < \dots < \kappa_k$ belong to I-i. Thus S_k contains the sentence $\phi \longleftrightarrow \phi^*$ where $\phi^* = t(\gamma, \kappa^{\gamma}, \kappa_1^{\gamma}, \dots, \kappa_k^{\gamma})$ and $\kappa^{\gamma} < \kappa_1^{\gamma} < \dots < \kappa_k^{\gamma}$ in $I_m \cap C_k$ are less than κ_1 . Write $\phi^* = v\phi^*$. Now by construction $T_0 \cup S_k$ proves $\phi^* \longleftrightarrow v(\phi^* \cap M_k(\kappa^{\gamma}))$ as $\phi^* \in H_k(\kappa^{\gamma}) \subseteq M_k(\kappa^{\gamma})$. By induction $T_0 \cup S_k$, $\vdash \psi^*$ for some $\psi^* \in \Phi^* \cap M_k(\kappa^{\gamma})$ and some $k' \geq k$. Now we can write $\psi^* = \overline{t}(\overline{\gamma}, \kappa_1^{\gamma}, \dots, \kappa_m^{\gamma})$ for some $\overline{\gamma} < \kappa_1^{\gamma}$ and \overline{t} since $M_k(\kappa_1^{\gamma}) \subseteq$ Skolem hull of $(\kappa_1^{\gamma} \cup \{\kappa_1^{\gamma}, \dots, \kappa_m^{\gamma}\})$. (Recall the requirement $m > \ell$ in the construction.) Finally we see that S_k contains the sentence $\psi^* \longleftrightarrow \psi$ where $\psi = \overline{t}(\overline{\gamma}, \kappa_1, \dots, \kappa_m)$ and $\psi \in \Phi$. Thus $T_0 \cup S_k$, $\vdash \psi$ for some $\psi \in \phi$.

We can now complete the proof of the Main Lemma. Define R = $\{n|T_0 \cup S_m \vdash R(\underline{n}) \text{ for some } m\}$. We show by induction on quantifier-free $\phi \in L_{\infty\omega}^{L}$ that $L(R) \models \phi$ iff $T_0 \cup S_m \vdash \phi$ for some m. If ϕ is atomic then ϕ is of the form $\underline{n} \in \underline{m}, \underline{n} = \underline{m}$ or $\underline{R}(\underline{n})$ and so the result is clear by the definition of R (and the consistency of $T_0 \cup S_m$ for all m). If $\phi = \sim \psi$ then the result follows by induction from the consistency of $T_0 \cup S_m$ for each m and the completeness of $\cup \{T_0 \cup S_m\} \mid m \in \omega\}$. If $\phi = v\phi$ then the result follows by induction and the fact demonstrated in the preceding paragraph. We

have shown that $S = S_0$ has a model. Also note that there is such a model definable over $L(0^{\#},T)$ whenever $T \subseteq \omega$ is a counting of i. This completes the proof of the Main Lemma.

Finally we use the argument for the Main Lemma to prove the Theorem. **Choose a real** $R \in A$ which is nonconstructible and which weakly preserves kindiscernibles for infinitely many k. By Lemmas 1-3 choose a special amenable class X containing I- α for some countable α so that R weakly preserves k-indiscernibles at (κ, γ) for infinitely many k, whenever $\kappa > \gamma$ belong to X. We consider the suitable class S of sentences which express " $R \in A, R$ is nonconstructible". Now given a counting T of a particular countable ordinal α , the proof of the Main Lemma provides the construction of a real R in $L(0^{\#},T)$ such that L(R) is a model of S. However note that as $T_{\Omega} \cup S \vdash R$ is nonconstructible there is the freedom at any stage k of the construction to consistently adjoin either of the sentences " $\underline{R}(\underline{n})$ ", " $\underline{R}(\underline{n})$ " to S_{μ} , for some $n \in \omega$. Thus in this way it is easy to build a perfect binary tree to possible constructions, any branch through which yields a distinct model of S and hnece a distinct element of A. The collection of all reals produced in this way constitutes a perfect closed subset of A. This completes the proof of the Theorem.

<u>POSTSCRIPT</u> 1) There is a nodification of the condition "R weakly preserves kindiscernibles for infinitely many k" which can be substituted into the statement of our Theorem. For $A, Y \subseteq \aleph_1$ we say that Y <u>indiscernibly defines</u> A if for some ℓ, Y is ℓ -indiscernible and for some term t, some $\gamma < \aleph_1$: $A \cap y_1 = t(\gamma, y_1, \dots, y_{\ell})$ for all $y_1 < \dots < y_{\ell}$ in Y, $\gamma < y_1$. Thus if $A \in L$ then I_{ℓ} indiscernibly defines A for sufficiently large ℓ . Now the new condition on R is: (*) For infinitely many k, X k-indiscernible, $X \in L \longrightarrow$ there exists $A \subseteq \aleph_1, A \in L$ such that $X \cap Y$ is k-indiscernible^R whenever $Y \subseteq \aleph_1, Y \in L$ and Y indiscernibly defines A.

2) The advantage of the preceding property (*) is that we can show: If R Jensen codes an amenable class then R satisfies (*). Thus any amenable forcing for producing a nonconstructible Π_2^1 singleton must be somewhat different than Jensen coding.

REFERENCES

Beller-Jensen-Welch [82]

<u>Coding the Universe</u>, London Math. Society Lecture Notes #47.

Devlin-Jensen [74]

Marginalia to a Theorem of Silver, Springer Lecture Notes #499.

Paris [74]

5 2

Patterns of Indiscernibles, Bulletin of the London Math. Society.

Shelah [82]

Proper Forcing, Springer Lecture Notes #940.

DEPARTMENT OF MATHEMATICS MASSACHUSETTS INSITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139