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Abstract

We show that isomorphism is not a complete Σ1
1 equivalence rela-

tion even when restricted to the hyperarithmetic reals: If E1 denotes
the Σ1

1 (even ∆1
1) equivalence relation of [4]then for no Hyp function

f do we have xEy iff f(x) is isomorphic to f(y) for all Hyp reals x, y.
As a corollary to the proof we provide for each computable limit ordi-
nal α a hyperarithmetic reduction of ≡α (elementary-equivalence for
sentences of quantifier-rank less than α) on arbitrary countable struc-
tures to isomorphism on countable structures of Scott rank at most
α.

In classical descriptive set theory, analytic equivalence relations (i.e., Σ1
1

equivalence relations with parameters) are compared under the relation of
Borel reducibility (see [3]). An important subclass of the Σ1

1 equivalence
relations is the class of isomorphism relations, i.e., the restrictions of the
isomorphism relation on countable structures (viewed as an equivalence re-
lation on reals coding such structures) to the models of a sentence of the
infinitary logic Lω1ω. Scott’s Theorem implies that the equivalence classes of
any isomorphism relation are Borel, and therefore no isomorphism relation
can be complete (under Borel reducibility) within the class of Σ1

1 equivalence
relations as a whole, as some of these have non-Borel equivalence classes.

The picture is different in the computable setting. It is shown in [1] that
isomorphism on computable structures (viewed as an equivalence relation
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on natural numbers coding such structures), indeed on computable trees, is
complete for Σ1

1 equivalence relations under the natural analogue of Borel-
reducibility for equivalence relations on numbers: E is reducible to F iff for
some hyperarithmetic f : N → N, E(m,n) iff F (f(m), f(n)) for all m,n.

In [2] we surveyed the situation for classes of structures intermediate be-
tween the class of computable structures and the class of arbitrary countable
structures. But one important case was not treated in that paper, the class
of hyperarithmetic structures. The purpose of the present paper is to fill that
gap.

By a Σ1
1 equivalence relation we mean an equivalence relation on the reals

which is Σ1
1 definable without parameters (equivalently, with a hyperarith-

metic real parameter). By a Hyp function from reals to reals we mean a
function which is ∆1

1 (equivalently Σ1
1) definable without parameters. (Hyp

stands for Hyperarithmetic, which equals ∆1
1.) A Σ1

1 equivalence relation F
is complete on Hyp if for any Σ1

1 equivalence relation E there is a Hyp func-
tion f such that for Hyp reals x, y: xEy iff f(x)Ff(y). In [2] the question
of whether isomorphism is complete on Hyp was left open. The method of
[1] showing that it is complete on the class of computable structures does
not seem to work due to the absence of a Hyp enumeration of all Hyp reals,
and the use of Scott’s Isomorphism Theorem to show that it is incomplete
on the class of arbitrary countable structures does not work either, as if the
countable structure A has a Hyp code there need not be a Borel set B with
Hyp code which agrees on Hyp with the set of codes for structures isomorphic
to A.

The solution comes from a deeper look at descriptive set theory and
infinitary logic.

Theorem 1 Isomorphism is not complete on Hyp: There is a Σ1
1 (even ∆1

1)
equivalence relation E such that for no Hyp function f do we have xEy iff
f(x), f(y) code isomorphic structures (on ω) for all Hyp reals x, y.

The Relation E1

For x : ω × ω → 2 and n ∈ ω define (x)n : ω → 2 by (x)n(i) = x(n, i).
The equivalence relation E1 is defined by:
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x E1y iff (x)n = (y)n for large enough n.

E1 is a Hyp equivalence relation. It was introduced in [4], where it was shown
that there is no Borel reduction of E1 to isomorphism on countable structures
(or even to any orbit equivalence relation determined by a Borel action of a
Polish group). First we show:

Theorem 2 Suppose that α is a limit of admissible ordinals. Then E1 is not
Hyp-reducible to ≃ (isomorphism) on Lα: There is no total Hyp function f
such that for x, y in Lα, x E1 y iff f(x), f(y) code isomorphic structures on
ω.

Proof. Suppose f were a Hyp-reduction of E1 to ≃ on Lα. For structures A,
B on ω define: A ≃n B iff A, B are isomorphic via an isomorphism which
fixes 0, 1, . . . , n− 1.

Also write x En,k
1 y iff (x)i = (y)i for i ≥ n and (x)i ↾ k = (y)i ↾ k for

i < n.

Claim. Suppose that g : ω × ω → 2 is Cohen-generic over Lωck

1
. Then for

each m,n there is a k so that if h : ω × ω → 2 is Cohen-generic over Lωck

1

and g En,k
1 h then f(g) ≃m f(h).

Proof. For any x : n×ω → 2 let gx be defined to agree with g on (ω \n)×ω

and to agree with x on n×ω. Also let x0 : n×ω → 2 take the constant value
0. Now note that x = g ↾ n × ω is Cohen-generic over Lωck

1
[g ↾ (ω \ n) × ω]

and let k be large enough so that the condition g ↾ n × k on x forces that
f(gx), f(gx0) are isomorphic via an isomorphism sending (0, 1, . . . , m− 1) to
~k = (k0, k1, . . . , kn−1) for some fixed ~k. If h : ω × ω → 2 is Cohen-generic
over Lωck

1
and g En,k

1 h then f(g), f(h) are both isomorphic to f(gx0) via an

isomorphism sending (0, 1, . . . , m − 1) to ~k and therefore f(g) ≃m f(h). 2

(Claim)

Now inductively build sequences ((gn, jn) | n ∈ ω) and (πn | 0 < n ∈ ω)
as follows (where the gn : ω × ω → 2 are Cohen-generic over Lωck

1
, 0 <

j0 < j1 < · · · are natural numbers and πn is an isomorphism of f(gn−1) onto
f(gn)). Fix an enumeration (Dn | n ∈ ω) in Lα of the dense sets for Cohen
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forcing which are definable over Lωck

1
. Let g0 : ω × ω → 2 be an arbitrary

element of Lα which is Cohen-generic over Lωck

1
and set j0 = 1. Suppose

that gn, jn have been defined (also πn if n > 0). To obtain gn+1 first apply
the Claim to produce kn ≥ jn so that if h is Cohen-generic over Lωck

1
and

gnE
jn,kn
1 h then f(gn) ≃ln f(h), where ln is greater than the images and pre-

images of the numbers less than n under the composition πn ◦ πn−1 ◦ · · · ◦ π0
(if n = 0 set ln = 0). Then choose jn+1 large enough so that some Cohen
condition contained in jn+1× jn+1, extending g

n ↾ jn×kn and satisfied by gn

belongs to the dense set Dn. Let gn+1 be gn except at the pair (jn+1, jn+1)
where its value is different from the value given by gn. Finally, let πn+1 be
an isomorphism witnessing f(gn) ≃ln f(g

n+1).

The resulting sequences have the following properties:

1. f(gn) ≃ln f(gn+1) where the ln’s go to infinity. (thus the compositions
πn ◦ πn−1 ◦ · · · ◦ π0 converge to a bijection).
2. The jn’s and kn’s increase to infinity (so the gn’s converge).
3. gn, gn+1 agree on jn+1 × jn+1 but (gn)jn+1

, (gn+1)jn+1
differ somewhere.

4. g = the limit of the gn’s is Cohen-generic over Lωck

1
.

Then g is not E1-equivalent to g
0 by 3. Now recall our assumption that α

is a limit of admissibles. This implies that wellfoundedness is absolute to Lα

(i.e. any tree in Lα that is illfounded is also illfounded in Lα) and from this it
follows that any two structures which are countable in Lα and isomorphic are
also isomorphic in Lα (build a tree of partial isomorphisms). It now follows
that the sequence of gn’s can be built in Lα. Using 1 and 4, f(g0) ≃ f(g).
But this contradicts the assumption that f is a reduction of E1 to ≃ on Lα.
2

Now to prove Theorem 1 we modify the above argument as follows. Sup-
pose that f were a Hyp reduction of E1 to isomorphism on Hyp and choose a
large enough computable ordinal α so that the code for f belongs to Lα. Fix
a Hyp g0 : ω×ω → 2 which is Cohen-generic over Lα and belongs to Lβ where
β is also computable. We would like to build sequences ((gn, jn) | n ∈ ω)
and (πn | 0 < n ∈ ω) as above which are Hyp, as this will then yield the
desired contradiction. This is possible provided there is a computable bound
on the Scott ranks of all of the relevant structures f(gn), because if γ is
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a computable ordinal then the isomorphism relation on structures of Scott
rank at most γ is Hyp.

Note that if g, h : ω × ω → 2 and gE1h fails then f(g), f(h) are non-
isomorphic Hyp structures and therefore for some computable ordinal γ,
f(g) 6≡γ f(h) (where ≡γ is elementary equivalence for sentences of quantifier-
rank less than γ). Now the set of pairs (g, h) in Lβ such that gE1h fails is a
Hyp set (i.e., it belongs to Lωck

1
) and therefore there is some fixed computable

ordinal γ such that f(g) 6≡γ f(h) for all such pairs (g, h).

Lemma 3 Suppose that α is a nonzero computable ordinal.
Then there is a Hyp function A 7→ A∗ from countable relational structures
A to countable structures A∗ such that:
(a) A ≃ B → A∗ ≃ B∗.
(b) A∗ ≡α B∗ → A ≡α B.
(c) For each A, A∗ has Scott rank at most α.

Proof. We define A∗ as follows:

a. An element of A∗ is an ≡α class [a1, . . . , an] of a tuple (a1, . . . , an) from
A (where two tuples are equivalent under ≡α iff they have the same length
and satisfy the same formulas in A of quantifier-rank less than α).
b. RA∗

([a1, . . . , an]) iff RA(a1, . . . , an). (Thus the n-ary predicate RA be-
comes the unary predicate RA∗

. Note that RA∗

is well-defined.)
c. [a1, . . . , an]∗ [b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm] (i.e. we add a new binary
concatenation function ∗).
d. Lm([a1, . . . , an]) iff m = n (we add ω-many new unary predicates Lm,
m ∈ ω).

Claim 1. If A is isomorphic to B then A∗ is isomorphic to B∗. (This is clear.)

Claim 2. If A∗ ≡α B∗ then A ≡α B.

Proof. By induction on ϕ = ϕ(x1, . . . , xn) we show there is a formula ϕ∗ =
ϕ∗(x∗) with the same quantifier-rank as ϕ such that A � ϕ(a1, . . . , an) iff
A∗ � ϕ∗([a1, . . . , an]). For atomic ϕ = R(x1, . . . , xn) we may take ϕ∗ to be
R(x∗). And (∼ ϕ)∗ =∼ ϕ∗, (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗.
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If ϕ is ∃yψ(x1, . . . , xn, y) then take ϕ∗ to be ∃y∗(ψ∗(x∗ ∗ y∗) and L1(y
∗)).

We have:

A � ∃yψ(a1, . . . , an, y) iff
A � ψ(a1, . . . , an, an+1) for some an+1 iff
A∗ � ψ∗([a1, . . . , an, an+1]) for some an+1 iff
A∗ � ψ∗([a1, . . . , an] ∗ [an+1]) and L1([an+1]) for some an+1 iff
A∗ � ∃y∗(ϕ∗([a1, . . . , an] ∗ y

∗) and L1(y
∗)). 2 (Claim 2.)

Claim 3. Suppose that (A∗, [~a1], . . . , [~an]) ≡α (A∗, [~b1], . . . , [~bn]). Then [~ai] =

[~bi] for each i (and therefore A∗ has Scott rank at most α).

Proof. The hypothesis implies that (A∗, [~ai]) ≡α (A∗, [~bi]) for each i. And it

is enough to show that ~ai ≡α
~bi for each i. If ϕ has quantifier-rank less than

α then A � ϕ(~ai) iff A∗ � ϕ∗([~ai]) iff A∗ � ϕ∗([~bi]) iff A � ϕ(~bi). So as ϕ∗

also has rank less than α we are done. 2 (Lemma 3)

Now recall that we have computable ordinals β < γ such that for g, h in
Lβ, gE1h iff f(g) ≡γ f(h). Applying the Lemma when α is equal to γ we
obtain for g, h in Lβ:

gE1h→
f(g) ≃ f(h) →
f(g)∗ ≃ f(h)∗

and

f(g)∗ ≃ f(h)∗ →
f(g)∗ ≡γ f(h)

∗ →
f(g) ≡γ f(h) →
gE1h

and therefore have a Hyp reduction of E1 on Lβ to isomorphism on Hyp whose
range consists of structures of Scott rank bounded by a fixed computable
ordinal. As explained above, this allows us to repeat the proof of Theorem
2 to reach a contradiction from the assumption of a Hyp reduction E1 to
isomorphism on Hyp. This completes the proof of Theorem 1.

As a corollary to the proof of Lemma 3 we also obtain the following,
which may be of independent interest.
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Theorem 4 For each computable limit ordinal α there is a Hyp reduction
of the equivalence relation ≡α on countable structures to isomorphism on
countable structures of Scott rank at most α.

Proof. For each countable structure A and β < α let A∗
β be the structure

of Scott rank at most β defined in the proof of Lemma 3. Now form A∗ by
taking the union of disjoint copies of the structures A∗

β, β < α, expanded
with the quasiorder xβ0

≤ xβ1
iff β0 ≤ β1 when xβi

belongs to the copy of
A∗

βi
. Thus A∗ consists of the structures A∗

β, β < α, ordered in ordertype α.

If A ≡α B, then for each β < α, A∗
β is isomorphic to B∗

β via the iso-
morphism which sends [a1, . . . , an] to [b1, . . . , bn], where [b1, . . . , bn] satisfies
the same formulas of quanitfier rank at most β as [a1, . . . , an] (the fact that
A ≡α B implies that there is such a unique [b1, . . . , bn]). It follows that A∗

is isomorphic to B∗. Conversely, if A∗ is isomorphic to B∗ then Claim 2 of
the proof of Lemma 3 implies that A and B satisfy the same sentences of
quantifier rank less than α and therefore A ≡α B.

Finally, note that Claim 3 of the proof of Lemma 3 implies that A∗ has
Scott rank at most α. 2

Remarks. The results of this paper relativise in the natural way: For any
real parameter x, no reduction to isomorphism of E1 restricted to the reals
Hyp in x is Hyp in x. From this one can infer the Kechris-Louveau result
that there is no Borel reduction of the entire E1 to isomorphism on countable
structures.

Question. Suppose that E is a Σ1
1 equivalence relation and E1 is not Hyp-

reducible to E on Hyp. Then is E Hyp-reducible to isomorphism on Hyp?
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