The Current State of the Foundations of Set Theory

Godel’s work on incompleteness still casts a long shadow on the
foundations of set theory:

G6del’s First Incompleteness: There is no complete system of
axioms for mathematics: for any system, there will be a statement
that can neither be proved nor disproved using the axioms of that
system.

However there is a system of axioms, called ZFC and formulated in
the language of set theory, which does a pretty good job: it seems
strong enough to answer about 90% of the statements of
mathematical interest.
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ZFC however does a very bad job for set theory itself: most of the
interesting statements of abstract set theory can’t be answered
using just ZFC; the most famous example is:

The Continuum Hypothesis (CH): If X, Y are uncountable sets of
real numbers then there is a bijection between X and Y.

Godel: ZFC does not refute CH, i.e. ZFC + CH is consistent.
Cohen: ZFC does not prove CH, i.e., ZFC + ~ CH is consistent.

We say that CH is undecidable in ZFC.
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Here is another example:
The projective sets of reals are defined as follows:

i. Open sets are projective.

ii. The complement of a projective set is projective.

iii. If f is a continuous function and X is projective then so is [X],
the image of X under f.

Projective Measurability (PM): All projective sets are Lebesgue
measurable.

Goédel: ZFC does not prove PM.
Solovay: ZFC does not refute PM.

However there is an important difference between these two
examples, CH and PM:
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When we say that ZFC cannot prove or refute something, we are of
course assuming that ZFC is a consistent theory!

Otherwise ZFC proves a contradiction and from a contradiction we
can derive anything at all.

So the CH example is really the following statement:

Assuming ZFC is consistent, ZFC does not refute CH.
Assuming ZFC is consistent, ZFC does not prove CH.

But the PM example is actually the following:



The Current State of the Foundations of Set Theory

Assuming ZFC is consistent, ZFC does not prove PM.
Assuming that the theory (ZFC + There is an inaccessible infinity)
is consistent, ZFC does not refute PM.

And we cannot get rid of inaccessible infinities, because we have a
converse:

Shelah: If ZFC does not refute PM (i.e., if ZFC + PM is consistent)
then (ZFC + There is an inaccessible infinity) is consistent!



Axioms of Infinity (Large Cardinal Axioms)

What is an inaccessible infinity (inaccessible cardinal)?
First note the following obvious facts:

i. If Ais a finite set then so is P(A), the set of subsets of A (the
power set of A).

ii. If Ais a finite set and for each element a of A, B, is a finite set
then the union of the B,’s is also finite.

Therefore we can say that the size (cardinality) of the set of natural
numbers is inaccessible, as it cannot be reached using only finite
sets.

We say that an uncountable set has inaccessible size (cardinality) if
it cannot be reached using sets of smaller size in a similar way.
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Can we prove that inaccessible cardinals exist? We cannot:
The theory ZFC + There is an inaccessible cardinal is strong
enough to prove that ZFC is consistent. But:

Godel’s Second Incompleteness: (Assuming ZFC is consistent) ZFC
cannot prove that ZFC is consistent.

So in ZFC one cannot prove that inaccessible cardinals exist.
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The result

If (ZFC + There is an inaccessible cardinal) is consistent
then so is (ZFC + PM)

is an example of a Consistency Upper Bound result. It establishes
the consistency of ZFC together with a statement of interest, in
this case PM, assuming the consistency of ZFC together with the
existence of a large infinity, in this case an inaccessible cardinal.

But this is just the beginning. A huge number of statements in set
theory have been shown to be consistent with ZFC in this way,
using various kinds of large cardinals. Here is a brief list of some of
these large cardinal notions:
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Inaccessible
Mahlo

Weakly compact
Ramsey
Measurable
Hypermeasurable
Woodin
Superstrong
Hyperstrong
n-Superstrong
w-Superstrong

The above notions of infinity get stronger and stronger (as you go
down the list) and go all the way “to the edge of inconsistency”: the
natural extension to w + 1-Superstrong is inconsistent!
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Now the result

If (ZFC + PM) is consistent
then so is (ZFC + There is an inaccessible cardinal)

is an example of a Consistency Lower Bound result.
It shows that a certain large infinity is required for establishing the
consistency with ZFC of a statement of interest.

With PM we have the ideal situation:

Con(ZFC + Inaccessible) — Con(ZFC + PM) —
Con(ZFC + Inaccessible)

so we have exactly “measured” the consistency strength of PM.



The Modern Meta-Mathematics of Set Theory

More often, however, we just get upper and lower bounds which
don’t match; for example, if PFA stands for the Proper Forcing
Axiom we have:

Con(ZFC + Supercompact) — Con(ZFC + PFA) —
Con(ZFC + Woodin)

It is conjectured that Con(ZFC + PFA) —
Con(ZFC + Supercompact), but this remains open.

To summarise: Large cardinals provide the tools needed for
establishing the consistency of statements in set theory
(Consistency Upper Bounds). We have made some progress toward
showing that large cardinals are necessary for such consistency
results (Consistency Lower Bounds), but techniques for obtaining
the consistency of more than Woodin cardinals are still missing.



A Big Question

The incompleteness of the ZFC axioms is obviously of great
importance for set theory; indeed most of the interesting questions
of abstract set theory are undecidable in ZFC.

Question: Does the incompleteness of ZFC matter for “real
mathematics”?

The answer naturally depends on what is meant by “real
mathematics”.

Consider three examples:
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The Borel Conjecture: Strong measure 0 sets are countable.

A set of reals X has strong measure 0 if it can be covered by a
union of intervals I, whose lengths decrease to 0 arbitrarily fast.

The Whitehead Problem: If G is a Whitehead group (i.e. G is
Abelian and Ext'(G,Z) = 0) then must G be free?

The Kaplansky Conjecture: Any algebraic homomorphism from
C(X), X compact Hausdorff, into another Banach algebra is
continuous.

These questions were raised by “real” mathematicians (not
logicians!). They are all undecidable in ZFC.

[Sy: Tell your Kaplansky story.]



A Big Question

The Borel, Whitehead and Kaplansky problems concern large
objects (uncountable sets of reals, uncountable groups, “wild"
algebra homomorphisms).

Can we avoid undecidability if we stick to “countable” mathematics?
Not really.

PM (Projective Measurability) is expressible in countable
mathematics (by “coding” projective sets of real numbers by single
real numbers), and PM is something that mathematicians, not just
logicians, might care about.
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Can we avoid undecidability if we stick to “finite” mathematics?
Recall that we have 2 forms of undecidability:

CH-style: Undecidability assuming only Con(ZFC)
PM:-style: Undecidability assuming more than Con(ZFC)

Good news! Statements of finite mathematics seem to be immune
from CH-style undecidability.

However PM-style undecidability is unavoidable for logicians:
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Matijasevic: Let S be any sentence of set theory. Then there is a
polynomial p(xy,...,x,) with integer coefficients such that
provably in ZFC, p(x1,...,X,) has no solution in integers if and
only if ZFC + S is consistent.

For example, the consistency of ZFC + There is a supercompact
cardinal is equivalent to the unsolvability of some Diophantine
equation.

It doesn’t get more “finite” than that! But the polynommials we get
from Matijasevic are ridiculously big as well as mathematically
uninteresting; this is a logicians’ trick!
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For a long time logicians assumed that the only statements of finite
mathematics which fall victim to undecidability are the ones
created using logicians' tricks. Any “natural” statement of finite
mathematics (as opposed to logic!) should be decidable in ZFC.

But that was before Paris-Harrington.

Even though Paris and Harrington are logicians, they discovered a
remarkable statement of finite mathematics which one might have
expected a non-logician to discover.

Now in fact the Paris-Harrington statement is provable in ZFC; but
it not provable in ZFC without the axiom that says that infinite sets
exist, and this is still very shocking for logicians.



Paris-Harrington

Ramsey’s Theorem tells us that if we write [N]* for the set of
k-element subsets of N then whenever we write [N]¥ = P; U P,
there is an infinite H C N such that [H]* C Py or [H]¥ C Ps.

The Finite Ramsey Theorem says that if we don't insist that H be
infinite but only of some desired finite size L, we can work with
[{1,2,..., M}]¥ instead of the full [N] as long as M is large
enough in comparison to L.

Paris-Harrington imposes one extra innocent-looking requirement
on the set H: It should have more elements than its least element.
So {2,5,7} is OK but {4,5,7,12} is not.

Paris-Harrington: Finite Ramsey holds with the extra requirement
that H have more elements than its least element. But this is not
provable in ZFC without the axiom of infinity!
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Paris-Harrington is not enough to convince us that finite
marthematics really falls victim to undecidability: indeed the PH
Theorem is provable in a small subtheory of ZFC.

Moreover unlike the Borel, Kaplansky and Whitehead problems,
Paris-Harrington was manufactured by logicians.

There have been further examples of undecidability in finite
mathematics, but so far they have either been manufactured by
logicians or are decidable in ZFC. So for now it is reasonable to
assume that ZFC is indeed adequate for answering “natural”
questions of finite mathematics and the only worries concern the
decidability of properties of infinite objects.



But what should we do about undecidability in infinite
mathematics?

Option 1: Ignore undecidability!

For the mathematician this means crossing one’s fingers that it
won’t come up in one’s own work. For the set-theorist this means
celebrating the chaos of a multitude of different interpretations of
set theory.

Option 2: Take steps to avoid undecidability.

Working in finite mathematics is still very safe. Countable
mathematics is more dangerous but nearly all examples of
undecidability in countable mathematics involve “coding” simple
uncountable objects by countable ones, a rare occurence in
mathematics. Working in uncountable mathematics has become
very risky and unfortunately logicians offer few guarantees.



What should we do about undecidability?

Option 3: Learn to love undecidability.

This requires learning set theory, something mathematicians rarely
have the time or desire to do.

Option 4: Strengthen the ZFC axioms.
My choice!
Stronger axiom systems leave fewer statements undecided.

But how do we strengthen ZFC?



Strengthening ZFC: Truth and Evidence

Set-theorists don’t want to add new axioms unless they are true

But what do we take as evidence for the truth of a new axiom of
set theory?

Currently there are three forms of such evidence, corresponding to
the three distinct roles that set theory plays.



Practice-Based Evidence

Here we focus on the value of a new axiom for the development of
set theory as a branch of mathematics. Some examples:

Godel's V =1L

Large cardinal axioms like “There is a supercompact cardinal”
Forcing axioms like PFA (Proper Forcing Axiom)
Determinacy axioms like PD (Projective Determinacy)

Cardinal characteristic axioms like “The Cichon Diagram is strict”

Each of these axioms has inspired deep and beautiful set theory.

But they can’t all be true! V = L contradicts the others and PFA
contradicts the strictness of the Cichon Diagram.

What are we going to do about this?

Answer: Combine this with other forms of evidence!



Foundational Evidence and the Independence Project

Set theory’s original and most important role was to provide a
foundation for mathematics.

This has been very successful, except for the severe problem of
independence: ZFC is just too weak to resolve questions like the
Borel Conjecture, the Whitehead Problem and the Kaplansky
Conjecture.

The Independence Project (Grant proposal submitted)
First systematic study of independence across mathematics.

Key question: Are particular axioms most effective for resolving
independence across mathematics as a whole?

If so, this provides foundational evidence for such axioms.
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Axioms with foundational evidence:

Godel's V =1L

Forcings axioms like PFA

In particular, both resolve the Borel, Whitehead and Kaplansky
problems (in different ways)

So far, the other practice-based axioms, Large cardinal axioms,
Determinacy axioms and Cardinal characteristic axioms, have not
had any impact on mathematics outside of set theory; but the first
two do not contradict PFA, so PFA + Large cardinal axioms (which
imply Determinacy axioms) has both practice-based and
foundational support.



Intrinsic Evidence and the Hyperuniverse Programme

Set theory is also a study of the set concept.

An intrinsic feature of the set concept is the maximality of the
universe of sets.

The Hyperuniverse Programme (HP) is a programme for extracting
consequences of this maximality feature.

There is therefore intrinsic evidence for the axioms that arise from
the HP.

The programme is new, but preliminary indications are that the
axioms arising in the HP contradict V = L and PFA, but are
compatible with Large cardinal axioms and imply that CH is very
false (the continuum is very large)



The strongest possible evidence

If there is practice-based, foundational and intrinsic evidence for an
axiom then we can make a strong case for its truth and add it to
ZFC.

Unfortunately this still leaves the size of the continuum undecided;
if ¢ is the size of the continuum, then:

Intrinsic evidence: ¢ is very large
Foundational evidence: ¢ is Ny

Practice-based evidence: ¢ can be anything

However, at least “not CH” and PD do well based on all three forms
of evidence.
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Can we therefore say that “not CH" and PD are “true”?

Perhaps, but we first need a better understanding of both
foundational and intrinsic truth, obtained through the further
development of the Independence Project and the Hyperuniverse
Programme.

It will be very interesting to see how things turn out.

Thanks for listening.



