
Cantor’s Set Theory

from a Modern Point of View

Georg Ferdinand Ludwig Philipp Cantor

Berlin doctorate 1867 (number theory)

Appointed in Halle 1869, habilitation (number

theory)

Heine → Study of trigonometric series →

Set theory:

Theory of transfinite numbers and cardinality

Algebraic numbers are countable

Real numbers are not countable

1-1 correspondence between n-dimensional space

and the real line

Founder of the DMV 1890

First President of the DMV 1891

Opposition: Kronecker

Support: Dedekind

???: Mittag-Leffler



Transfinite counting

C closed set of reals

C′ = limit points of C (Cantor derivative)

C ⊇ C′ ⊇ C′′ ⊇ · · ·

C∞ = the intersection

C∞ ⊇ (C∞)′, maybe strict!

Keep counting: C∞ ⊇ C∞+1 ⊇ C∞+2 ⊇ · · · !

What is 0,1, ...,∞,∞ + 1, ...?

Wellordering: Linear ordering with no infinite

descending sequence

Cantor: Any 2 wellorderings are comparable

Each wellordering isomorphic to an ordinal, a

special wellordering ordered by ∈

0 = ∅,1 = {0},2 = {0,1}, ..., ω = {0,1,2, ...},

ω+ 1 = ω ∪ {ω}, . . .

Cantor’s assumption: Every set can be wellor-

dered

Therefore every set bijective with an ordinal

(not unique)



Cardinal = Ordinal not bijective with a smaller

ordinal

Every set bijective with a unique cardinal, its

cardinality

Zermelo: Cantor’s assumption follows from the

Axiom of Choice

So Cantor’s theory of cardinality applies to ar-

bitrary sets

One major gap!

What is the cardinality of the continuum?

Continuum Hypothesis (CH):

Every uncountable set of reals has the same

cardinality as the set of all reals



Paradoxes

Cantor, Burali-Forti, Russell

x = all y such that y /∈ y

x ∈ x↔ x /∈ x!

Zermelo’s proposal

Only use established principles of set-formation

Axiomatic theory: Zermelo set theory

ZFC = Zermelo-Fraenkel set theory with the

Axiom of Choice

The Universe of Sets V

ZFC gives the following picture:



First picture of V

Reduces V to ordinals and power set operation

Not a canonical description

The Vagueness of Power Set

2 approaches:

Definable sets: descriptive set-theory

Borel sets = smallest σ-algebra containing all

open sets

Σ1
1 = continuous image of a Borel set

Π1
1 set = complement of Σ1

1 set

Σ1
n+1 set = continuous image of Π1

n set

Π1
n+1 set = complement of Σ1

n+1 set

Projective = Σ1
n or Π1

n for some n



1930s

Σ1
1 sets satisfy CH: an uncountable Σ1

1 set has

the cardinality of the reals

Π1
1 sets?

Constructibility (Gödel)

Replace power set operation by a weak power

set operation:

Vα+1 = all subsets of Vα
Lα+1 = all “simple” subsets of Lα
L = union of the Lα’s

L satisfies ZFC

First canonical model (= interpretation) of ZFC

CH holds in L!

Gödel:

L is not the correct intepretation of ZFC

Only a tool for showing that statements are

consistent with ZFC

There are other interpretations of ZFC:

Cohen’s Forcing method



Add new sets to L, preserving ZFC

R is Cohen over L iff

R belongs to every open dense set of reals

which L can “describe”

Add many Cohen reals to L, obtain model whe-

re CH fails

Another use of forcing: R in [0,1] is random

over L iff

R belongs to every measure one subset of [0,1]

which L can “describe”

Using random reals: Model where every projec-

tive set of reals is Lebesgue measurable

Thus CH is undecidable using the ZFC axioms

Dilemma: Different universes with different kinds

of mathematics?



Canonical Universes

Find canonical, acceptable interpretation of V

Correct answers to undecidable problems given

by this interpretation

Gödel’s L is canonical, but not acceptable:

Too easily changed using forcing

Universes constructed using forcing are not ca-

nonical:

If there is one Cohen (random) real over L,

then there are many

How does one obtain canonical universes larger

than L?



Answer from measure theory

Countably additive extension of Lebesgue mea-

sure to all sets of reals → V is not L

Model of ZFC with such a measure ↔

Model of ZFC with a measurable cardinal

Silver:

Measurable cardinal → Canonical inner model

(= subuniverse) with a measurable cardinal

First canonical interpretation larger than L

Acceptable?

Measurable cardinal: example of a “large car-

dinal hypothesis”

These hypotheses have a crucial role in set

theory:



ϕ is consistency-equivalent to ψ:

ZFC +ϕ has a model iff ZFC +ψ has a model

Empirical fact:

For any natural set-theoretic assertion ϕ, ϕ is

consistency-equivalent to 0 = 0, 0 = 1 or a

large cardinal hypothesis

Large cardinal hypotheses measure the strength

of set-theoretic assertions

Silver’s model = desired canonical interpreta-

tion of V ?

Too small!

More than a measurable cardinal is needed to

measure strength:

A is Wadge reducible to B iff

For some continuous f , x ∈ A iff f(x) ∈ B

WPn: If A,B are Σ1
n but not Π1

n then

A is Wadge reducible to B and vice-versa



We have:

WP1 is consistency equivalent to #’s, a large

cardinal hypothesis below a measurable cardi-

nal.

WP2 is consistency equivalent to the existence

of a Woodin cardinal, much larger than a mea-

surable cardinal!

WPn requires n− 1 Woodin cardinals

Desired canonical model for ZFC should allow

Woodin cardinals



Ongoing project: Construction of canonical in-

ner models for large cardinals

Cannot be built in ZFC!

Instead: If there is a certain large cardinal then

there is a canonical inner model with this large

cardinal

Circular? Why should these large cardinals exist?

Maybe WPn is simply false for n > 1!

Important challenge: Justification of large car-

dinal hypotheses

One approach: self-embeddings of models

M is rigid iff there is no embedding M →

M preserving basic operations (union, product,

difference, ...)

Smallest large cardinal axiom (0# exists) equi-

valent to: L is not rigid

L not rigid → there is a canonical L# which

satisfies “L is not rigid”



Repeat this:

L# not rigid → there is a canonical L## whe-

re this is true

L## not rigid → L###, etc.

Fact: There is a canonical such #-iteration

which leads to Woodin cardinals

Analogous to Gödel’s construction of L (itera-

tion of a weak power set operation)

ZFC justifies use of Gödel’s operation

Here one must argue that models in a canoni-

cal #-iteration are not rigid

Justifies existence of inner models with Woo-

din cardinals

However: No canonical # iteration is known

past Woodin cardinals

Finding such an operation remains an import-

ant problem and would give:



1. A satisfying picture of the set-theoretic uni-

verse

2. Numerous further applications of set theory

3. Justify the use of large cardinal hypotheses

4. Substantiate the claim that the paradoxes

that worried Cantor in the infancy of set theory

have been definitively resolved.


