
The Current State of the Foundations of Set TheorySy-David Friedman (KGRC)Graz, Mar
h 2013Gödel's work on in
ompleteness still 
asts a long shadow on the founda-tions of set theory.Gödel's First In
ompleteness Theorem: There is no 
omplete system of ax-ioms for mathemati
s: For any system, there will be a statement that 
anneither be proved nor disproved using the axioms of that system.However the fa
t remains that there is a system of axioms, 
alled ZFCand formulated in the language of set theory, whi
h does a pretty good job: itseems strong enough to answer about 90% of the statements of mathemati
alinterest.Thus there are two sides of set theory:1. The Mathemati
s of set theory: that whi
h 
an be proved in ZFC.Examples: All of your favourite theorems. The Poin
aré Conje
ture, the 4-
olour theorem, Fermat's last theorem (probably1).2. The Meta-Mathemati
s of set theory: the study of statements that ZFC
annot prove or disprove (i.e., whi
h are unde
idable in ZFC).a. The most famous example:The Continuum Hypothesis (CH): If X, Y are un
ountable sets of real num-bers then there is a bije
tion between X and Y .Gödel: ZFC does not refute CH, i.e. ZFC + CH is 
onsistent.1This is an interesting 
ase. Wiles' proof uses ideas whi
h tra
e ba
k to Grothendie
k'swork, whi
h formally speaking uses �universes� whose existen
e requires ina

essible in�ni-ties (whi
h we introdu
e below) and therefore 
annot be proved in ZFC. However expertsin the area are all 
onvin
ed that Grothendie
k's work 
an be formulated without ina
-
essible in�nities and indeed within ZFC without di�
ulty. A dis
ussion of this appearsin [5℄. 1



Cohen: ZFC does not prove CH, i.e., ZFC + ∼ CH is 
onsistent.b. Another example:The proje
tive sets of reals are de�ned as follows:i. Open sets are proje
tive.ii. The 
omplement of a proje
tive set is proje
tive.iii. If f is a 
ontinuous fun
tion and X is proje
tive then so is f [X ], theimage of X under f .Proje
tive Measurability (PM): All proje
tive sets are Lebesgue measurable.Gödel: ZFC does not prove PM.Solovay: ZFC does not refute PM.However there is an important di�eren
e between these two examples, CHand PM:In both examples, when we say that ZFC 
annot prove or refute some-thing, we are of 
ourse assuming that ZFC is a 
onsistent theory! OtherwiseZFC proves a 
ontradi
tion and from a 
ontradi
tion we 
an derive anythingat all. And the assumption that ZFC is 
onsistent is a nontrivial assumption:Gödel's Se
ond In
ompleteness Theorem (for ZFC): ZFC 
annot prove thatZFC is 
onsistent (of 
ourse assuming that ZFC is 
onsistent).So the CH example is really the following statement:Assuming ZFC is 
onsistent, ZFC does not refute CH.Assuming ZFC is 
onsistent, ZFC does not prove CH.But the PM example is a
tually the following:Assuming ZFC is 
onsistent, ZFC does not prove PM.Assuming that the theory (ZFC + There is an ina

essible in�nity)is 
onsistent, ZFC does not refute PM.I'll say something about ina

essible in�nities in a moment. But we 
annotget rid of them! The 
onsisten
y of the theory (ZFC + There is an ina

essible2



in�nity) does not follow from the 
onsisten
y of ZFC alone. And we have a
onverse:Shelah: If ZFC does not refute PM (i.e., if ZFC + PM is 
onsistent) then(ZFC + There is an ina

essible in�nity) is 
onsistent!So we really are for
ed to deal with ina

essible in�nities if we want to un-derstand the unde
idability of PM in ZFC.Axioms of In�nity (Large Cardinal Axioms)What is an ina

essible in�nity?First note the following obvious fa
ts:i. If A is a �nite set then so is P(A), the set of subsets of A (the power setof A).ii. If A is a �nite set and for ea
h element a of A, B
a
is a �nite set then theunion of the B

a
's is also �nite.Therefore we 
an say that the size (
ardinality) of the set of natural numbersis ina

essible, as it 
annot be rea
hed using only �nite sets.We say that an un
ountable set has ina

essible size (
ardinality) if it
annot be rea
hed using sets of smaller size in a similar way.In set theory, the sizes of sets are measured by spe
ial numbers 
alled
ardinal numbers. The 
ardinal number that measures the size of a set X is
alled the 
ardinality of X . Thus an ina

essible 
ardinal is a 
ardinal numberwhi
h is the 
ardinality of an un
ountable set of ina

essible size.Can we prove that ina

essible 
ardinals exist? We 
annot. It turns outthat in the theory ZFC + There is an ina

essible 
ardinal, one 
an provethat ZFC is 
onsistent. It then follows from Gödel's Se
ond In
ompletenessTheorem that in ZFC, one 
annot prove that ina

essible 
ardinals exist.Now that I have introdu
ed large in�nities, I 
an des
ribe:The Modern Meta-Mathemati
s of Set TheoryThe result 3



If (ZFC + There is an ina

essible 
ardinal) is 
onsistentthen so is (ZFC + PM)is an example of a Consisten
y Upper Bound result. It establishes the 
onsis-ten
y of ZFC together with a statement of interest, in this 
ase PM, assumingthe 
onsisten
y of ZFC together with the existen
e of a large in�nity, in this
ase an ina

essible 
ardinal.But this is just the beginning. A huge number of statements in set theoryhave been shown to be 
onsistent with ZFC in this way, using various kindsof large 
ardinals. Without going into details, here is a brief list of some ofthese large 
ardinal notions:Ina

essibleMahloWeakly 
ompa
tRamseyMeasurableHypermeasurableWoodinSuperstrongHyperstrongSuper
ompa
t
n-Superstrong, n > 1
ω-SuperstrongThe above notions of in�nity get stronger and stronger (as you go down thelist) and go all the way �to the top�: the natural extension to ω+1-Superstrongis in
onsistent!Now the resultIf (ZFC + PM) is 
onsistentthen so is (ZFC + There is an ina

essible 
ardinal)is an example of a Consisten
y Lower Bound result. It shows that a 
er-tain large in�nity is required for establishing the 
onsisten
y with ZFC of astatement of interest. With PM we have the ideal situation:Con(ZFC + Ina

essible) → Con(ZFC + PM) → Con(ZFC + Ina

essible)4



so we have exa
tly �measured� the 
onsisten
y strength of PM. More often,however, we just get upper and lower bounds whi
h don't quite mat
h; forexample, if PFA stands for the Proper For
ing Axiom we have:Con(ZFC + Super
ompa
t) → Con(ZFC + PFA) → Con(ZFC + Woodin)It is 
onje
tured that Con(ZFC + PFA) → Con(ZFC + Super
ompa
t), butthis remains open.To summarise: Large 
ardinals provide the tools needed for establishing the
onsisten
y of statements in set theory (Consisten
y Upper Bounds). Wehave made some progress toward showing that large 
ardinals are ne
essaryfor su
h 
onsisten
y results (Consisten
y Lower Bounds), but te
hniques forobtaining the 
onsisten
y of Superstrong 
ardinals and beyond are still miss-ing. Extending ZFCWe now 
ome to the most 
ontroversial topi
 in the 
ontemporary foun-dations of set theory.It was Gödel's hope that by adding large 
ardinal axioms (the assumptionthat large in�nities exist) to ZFC one would obtain a theory that wouldresolve the major questions of set theory, like CH. But this turned out to betrue only in a very limited way:Good news: Large 
ardinals not only show that PM is 
onsistent but in fa
tshow that PM and many other ni
e properties of proje
tive sets are true ([4℄).Bad news: Large 
ardinals do not help with CH: they do not imply CH andthey do not refute CH.Despite the bad news, should we add large 
ardinal axioms to ZFC andadopt them as part of the �true� axioms of set theory anyway? Set-theoristsdi�er in their opinions about this.1. Yes! (Woodin [7℄, for example). The �real� universe should be as large aspossible (�maximal� in some sense) and therefore should in
lude all 
on
eiv-able large in�nities. 5



2. No! (Shelah [6℄, for example). ZFC summarises our intuitions about setsand therefore any interpretation of the ZFC axioms is as good as any other.We 
an hope to show that a statement is 
onsistent with ZFC, but never
laim that it is �true� unless ZFC proves it.3. Yes and No! (My position, see [1℄). Adding axioms based on �maximality�prin
iples for the universe of sets does lead to �true� statements, in
ludingthe existen
e of the smaller of the large in�nities (below a Ramsey 
ardinal),but not to the existen
e of the larger in�nities (Ramsey and above).When formulated 
arefully (see [1℄), maximality prin
iples 
ome in twovarieties. There are the ordinal (or verti
al) maximality prin
iples whi
h saythat the extension of the sequen
e of natural numbers given by the ordinalnumber sequen
e 0, 1, . . . , ω, ω+1, . . . is as long as possible, and the power set(or horizontal) maximality prin
iples, whi
h say, among other things, thatthe set of real numbers is as large as possible. Ordinal maximality leads tothe smaller of the large 
ardinals, the ones favoured by Gödel, su
h as theina

essible, Mahlo and weakly 
ompa
t 
ardinals. But power set maximality,although it has some important 
onsequen
es, seems in
apable of yielding theexisten
e of Ramsey 
ardinals 2.As I said earlier, even if we adopt large 
ardinal axioms as new axioms,the fa
t remains that we still have not resolved many important questions inset theory, like CH. Attempts have been made to answer su
h questions bysupplementing large 
ardinal axioms using the power set maximality prin-
iples. But this has not yet su

eeded be
ause it is very di�
ult to �nd
onsistent and 
onvin
ing maximality prin
iples whi
h both de
ide CH and2Ordinal maximality prin
iples are 
losely related to the �re�e
tion prin
iples� favouredby Gödel (see [3℄ for a dis
ussion of these prin
iples). Power set maximality, in its basi
form, �xes the ordinal numbers and asserts that if one enlarges the universe, then anystatement that be
omes true was already true in a subuniverse of the original universe. Thisis also 
alled the inner model hypothesis (IMH), introdu
ed in [2℄. The IMH 
ontradi
ts theexisten
e of ina

essible 
ardinals; however if it is applied only to ordinal maximal universes(suitably de�ned), one obtains a 
onsistent version whi
h embodies the smaller of the large
ardinals, but fails to imply the existen
e of the larger ones, su
h as Ramsey 
ardinals. Of
ourse one 
ould restri
t the IMH to universes 
ontaining very large 
ardinals, but unlikefor the smaller large 
ardinals, there is no 
onvin
ing prin
iple similar to �re�e
tion� whi
himplies that su
h very large 
ardinals exist, and therefore su
h a version of the IMH wouldbe arti�
ial. 6



are 
ompatible with the stronger of the large 
ardinal axioms3. There is agood 
andidate4 for su
h a prin
iple; what remains is the 
hallenging task ofshowing that it is 
onsistent.A New ProposalIt is too early to say if set-theorists will ever agree on what new axiomsto add to ZFC. At present, most but not all set-theorists would be happyto add the smaller large 
ardinal axioms, up to a weakly 
ompa
t 
ardinal.That is of 
ourse a long way from agreeing on an extension of ZFC that willde
ide questions like CH.But maybe set-theorists should look outside of set theory. I said at thebeginning that ZFC is not a bad theory in the sense that it is su�
ientto de
ide 90% of the statements of mathemati
al interest. But 90% is not100% and there are indeed areas of mathemati
s (and of mathemati
al logi
outside of set theory) where one ex
eeds the 
apabilities of ZFC. This hashappened in point-set topology, fun
tional analysis and homologi
al algebra,for example. Within mathemati
al logi
, this is 
urrently a pressing issue inmodel theory, where one tries to understand 
lasses of stru
tures whi
h arenot des
ribed by properties expressible in standard, �rst-order logi
.3Although large 
ardinals do not settle CH, they do imply that statements like PM(�proje
tive statements�) whi
h are true in an enlargement of the universe via �set-for
ing�are already true without su
h an enlargement. (�Set-for
ing� is the method that Cohenused to prove the 
onsisten
y of ZFC with ∼ CH.) This 
an be viewed as an �invarian
e�result, a 
ousin of �maximality�. Building on this, Woodin [7℄ has explored, via his Ω-logi
,a similar phenomenon for a larger 
lass of statements, in
luding CH; he shows that anystatement whi
h together with large 
ardinals a
hieves a similar e�e
t for this larger 
lassmust also imply ∼ CH. Unfortunately, the large 
ardinals required for this work are notsmall and therefore their existen
e 
annot be derived from a 
onvin
ing prin
iple su
h as�re�e
tion�. More seriously, the arti�
ial restri
tion to �set-for
ing� is essential for Woodin'swork: for any large 
ardinal property there are methods beyond �set-for
ing� whi
h 
anmake a true proje
tive statement false while preserving the truth of that large 
ardinalproperty. In fa
t one 
an easily de
ide CH via a simple and 
onsistent power set maximalityprin
iple, provided one is willing to restri
t to a spe
ial type of set-for
ing extension. Thusthe main goal is to obtain su
h a prin
iple without any set-for
ing restri
tion at all.4This is 
alled the strong inner model hypothesis (see [2℄), a version of the inner modelhypothesis whi
h allows statements with �absolute� parameters. In [2℄ it is formulatedwithout ordinal maximality, but a formulation restri
ted to ordinal maximal universes isalso possible. 7



Thus I pose the following question: Could it be that to su

essfully gener-alise what is known about �rst-order model theory to larger logi
s, one needsa parti
ular extension of ZFC? Could there be a similar situation in other�elds, where a parti
ular extension of ZFC is required to su

essfully gener-alise 
urrent theory? And after dis
overing all of this, 
ould it be that oneparti
ular extension of ZFC is optimal for su

ess a
ross all of these �elds?I really don't know how things will go. But I do think it is worthwhilefor set-theorists to keep the possibility in mind that future judgments aboutwhi
h axioms of set theory are to be embra
ed may 
ome not from withinset theory itself, but from other areas of mathemati
s and logi
. Set theoryhas for many de
ades provided a very useful foundation for mathemati
s. Itwould be both satisfying and appropriate if these other areas would returnthe favour by o�ering set theory new 
riteria for the 
hoi
e of axioms, therebyhelping to resolve the di�
ulties posed by Gödel in
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