
The Current State of the Foundations of Set TheorySy-David Friedman (KGRC)Graz, Marh 2013Gödel's work on inompleteness still asts a long shadow on the founda-tions of set theory.Gödel's First Inompleteness Theorem: There is no omplete system of ax-ioms for mathematis: For any system, there will be a statement that anneither be proved nor disproved using the axioms of that system.However the fat remains that there is a system of axioms, alled ZFCand formulated in the language of set theory, whih does a pretty good job: itseems strong enough to answer about 90% of the statements of mathematialinterest.Thus there are two sides of set theory:1. The Mathematis of set theory: that whih an be proved in ZFC.Examples: All of your favourite theorems. The Poinaré Conjeture, the 4-olour theorem, Fermat's last theorem (probably1).2. The Meta-Mathematis of set theory: the study of statements that ZFCannot prove or disprove (i.e., whih are undeidable in ZFC).a. The most famous example:The Continuum Hypothesis (CH): If X, Y are unountable sets of real num-bers then there is a bijetion between X and Y .Gödel: ZFC does not refute CH, i.e. ZFC + CH is onsistent.1This is an interesting ase. Wiles' proof uses ideas whih trae bak to Grothendiek'swork, whih formally speaking uses �universes� whose existene requires inaessible in�ni-ties (whih we introdue below) and therefore annot be proved in ZFC. However expertsin the area are all onvined that Grothendiek's work an be formulated without ina-essible in�nities and indeed within ZFC without di�ulty. A disussion of this appearsin [5℄. 1



Cohen: ZFC does not prove CH, i.e., ZFC + ∼ CH is onsistent.b. Another example:The projetive sets of reals are de�ned as follows:i. Open sets are projetive.ii. The omplement of a projetive set is projetive.iii. If f is a ontinuous funtion and X is projetive then so is f [X ], theimage of X under f .Projetive Measurability (PM): All projetive sets are Lebesgue measurable.Gödel: ZFC does not prove PM.Solovay: ZFC does not refute PM.However there is an important di�erene between these two examples, CHand PM:In both examples, when we say that ZFC annot prove or refute some-thing, we are of ourse assuming that ZFC is a onsistent theory! OtherwiseZFC proves a ontradition and from a ontradition we an derive anythingat all. And the assumption that ZFC is onsistent is a nontrivial assumption:Gödel's Seond Inompleteness Theorem (for ZFC): ZFC annot prove thatZFC is onsistent (of ourse assuming that ZFC is onsistent).So the CH example is really the following statement:Assuming ZFC is onsistent, ZFC does not refute CH.Assuming ZFC is onsistent, ZFC does not prove CH.But the PM example is atually the following:Assuming ZFC is onsistent, ZFC does not prove PM.Assuming that the theory (ZFC + There is an inaessible in�nity)is onsistent, ZFC does not refute PM.I'll say something about inaessible in�nities in a moment. But we annotget rid of them! The onsisteny of the theory (ZFC + There is an inaessible2



in�nity) does not follow from the onsisteny of ZFC alone. And we have aonverse:Shelah: If ZFC does not refute PM (i.e., if ZFC + PM is onsistent) then(ZFC + There is an inaessible in�nity) is onsistent!So we really are fored to deal with inaessible in�nities if we want to un-derstand the undeidability of PM in ZFC.Axioms of In�nity (Large Cardinal Axioms)What is an inaessible in�nity?First note the following obvious fats:i. If A is a �nite set then so is P(A), the set of subsets of A (the power setof A).ii. If A is a �nite set and for eah element a of A, B
a
is a �nite set then theunion of the B

a
's is also �nite.Therefore we an say that the size (ardinality) of the set of natural numbersis inaessible, as it annot be reahed using only �nite sets.We say that an unountable set has inaessible size (ardinality) if itannot be reahed using sets of smaller size in a similar way.In set theory, the sizes of sets are measured by speial numbers alledardinal numbers. The ardinal number that measures the size of a set X isalled the ardinality of X . Thus an inaessible ardinal is a ardinal numberwhih is the ardinality of an unountable set of inaessible size.Can we prove that inaessible ardinals exist? We annot. It turns outthat in the theory ZFC + There is an inaessible ardinal, one an provethat ZFC is onsistent. It then follows from Gödel's Seond InompletenessTheorem that in ZFC, one annot prove that inaessible ardinals exist.Now that I have introdued large in�nities, I an desribe:The Modern Meta-Mathematis of Set TheoryThe result 3



If (ZFC + There is an inaessible ardinal) is onsistentthen so is (ZFC + PM)is an example of a Consisteny Upper Bound result. It establishes the onsis-teny of ZFC together with a statement of interest, in this ase PM, assumingthe onsisteny of ZFC together with the existene of a large in�nity, in thisase an inaessible ardinal.But this is just the beginning. A huge number of statements in set theoryhave been shown to be onsistent with ZFC in this way, using various kindsof large ardinals. Without going into details, here is a brief list of some ofthese large ardinal notions:InaessibleMahloWeakly ompatRamseyMeasurableHypermeasurableWoodinSuperstrongHyperstrongSuperompat
n-Superstrong, n > 1
ω-SuperstrongThe above notions of in�nity get stronger and stronger (as you go down thelist) and go all the way �to the top�: the natural extension to ω+1-Superstrongis inonsistent!Now the resultIf (ZFC + PM) is onsistentthen so is (ZFC + There is an inaessible ardinal)is an example of a Consisteny Lower Bound result. It shows that a er-tain large in�nity is required for establishing the onsisteny with ZFC of astatement of interest. With PM we have the ideal situation:Con(ZFC + Inaessible) → Con(ZFC + PM) → Con(ZFC + Inaessible)4



so we have exatly �measured� the onsisteny strength of PM. More often,however, we just get upper and lower bounds whih don't quite math; forexample, if PFA stands for the Proper Foring Axiom we have:Con(ZFC + Superompat) → Con(ZFC + PFA) → Con(ZFC + Woodin)It is onjetured that Con(ZFC + PFA) → Con(ZFC + Superompat), butthis remains open.To summarise: Large ardinals provide the tools needed for establishing theonsisteny of statements in set theory (Consisteny Upper Bounds). Wehave made some progress toward showing that large ardinals are neessaryfor suh onsisteny results (Consisteny Lower Bounds), but tehniques forobtaining the onsisteny of Superstrong ardinals and beyond are still miss-ing. Extending ZFCWe now ome to the most ontroversial topi in the ontemporary foun-dations of set theory.It was Gödel's hope that by adding large ardinal axioms (the assumptionthat large in�nities exist) to ZFC one would obtain a theory that wouldresolve the major questions of set theory, like CH. But this turned out to betrue only in a very limited way:Good news: Large ardinals not only show that PM is onsistent but in fatshow that PM and many other nie properties of projetive sets are true ([4℄).Bad news: Large ardinals do not help with CH: they do not imply CH andthey do not refute CH.Despite the bad news, should we add large ardinal axioms to ZFC andadopt them as part of the �true� axioms of set theory anyway? Set-theoristsdi�er in their opinions about this.1. Yes! (Woodin [7℄, for example). The �real� universe should be as large aspossible (�maximal� in some sense) and therefore should inlude all oneiv-able large in�nities. 5



2. No! (Shelah [6℄, for example). ZFC summarises our intuitions about setsand therefore any interpretation of the ZFC axioms is as good as any other.We an hope to show that a statement is onsistent with ZFC, but neverlaim that it is �true� unless ZFC proves it.3. Yes and No! (My position, see [1℄). Adding axioms based on �maximality�priniples for the universe of sets does lead to �true� statements, inludingthe existene of the smaller of the large in�nities (below a Ramsey ardinal),but not to the existene of the larger in�nities (Ramsey and above).When formulated arefully (see [1℄), maximality priniples ome in twovarieties. There are the ordinal (or vertial) maximality priniples whih saythat the extension of the sequene of natural numbers given by the ordinalnumber sequene 0, 1, . . . , ω, ω+1, . . . is as long as possible, and the power set(or horizontal) maximality priniples, whih say, among other things, thatthe set of real numbers is as large as possible. Ordinal maximality leads tothe smaller of the large ardinals, the ones favoured by Gödel, suh as theinaessible, Mahlo and weakly ompat ardinals. But power set maximality,although it has some important onsequenes, seems inapable of yielding theexistene of Ramsey ardinals 2.As I said earlier, even if we adopt large ardinal axioms as new axioms,the fat remains that we still have not resolved many important questions inset theory, like CH. Attempts have been made to answer suh questions bysupplementing large ardinal axioms using the power set maximality prin-iples. But this has not yet sueeded beause it is very di�ult to �ndonsistent and onvining maximality priniples whih both deide CH and2Ordinal maximality priniples are losely related to the �re�etion priniples� favouredby Gödel (see [3℄ for a disussion of these priniples). Power set maximality, in its basiform, �xes the ordinal numbers and asserts that if one enlarges the universe, then anystatement that beomes true was already true in a subuniverse of the original universe. Thisis also alled the inner model hypothesis (IMH), introdued in [2℄. The IMH ontradits theexistene of inaessible ardinals; however if it is applied only to ordinal maximal universes(suitably de�ned), one obtains a onsistent version whih embodies the smaller of the largeardinals, but fails to imply the existene of the larger ones, suh as Ramsey ardinals. Ofourse one ould restrit the IMH to universes ontaining very large ardinals, but unlikefor the smaller large ardinals, there is no onvining priniple similar to �re�etion� whihimplies that suh very large ardinals exist, and therefore suh a version of the IMH wouldbe arti�ial. 6



are ompatible with the stronger of the large ardinal axioms3. There is agood andidate4 for suh a priniple; what remains is the hallenging task ofshowing that it is onsistent.A New ProposalIt is too early to say if set-theorists will ever agree on what new axiomsto add to ZFC. At present, most but not all set-theorists would be happyto add the smaller large ardinal axioms, up to a weakly ompat ardinal.That is of ourse a long way from agreeing on an extension of ZFC that willdeide questions like CH.But maybe set-theorists should look outside of set theory. I said at thebeginning that ZFC is not a bad theory in the sense that it is su�ientto deide 90% of the statements of mathematial interest. But 90% is not100% and there are indeed areas of mathematis (and of mathematial logioutside of set theory) where one exeeds the apabilities of ZFC. This hashappened in point-set topology, funtional analysis and homologial algebra,for example. Within mathematial logi, this is urrently a pressing issue inmodel theory, where one tries to understand lasses of strutures whih arenot desribed by properties expressible in standard, �rst-order logi.3Although large ardinals do not settle CH, they do imply that statements like PM(�projetive statements�) whih are true in an enlargement of the universe via �set-foring�are already true without suh an enlargement. (�Set-foring� is the method that Cohenused to prove the onsisteny of ZFC with ∼ CH.) This an be viewed as an �invariane�result, a ousin of �maximality�. Building on this, Woodin [7℄ has explored, via his Ω-logi,a similar phenomenon for a larger lass of statements, inluding CH; he shows that anystatement whih together with large ardinals ahieves a similar e�et for this larger lassmust also imply ∼ CH. Unfortunately, the large ardinals required for this work are notsmall and therefore their existene annot be derived from a onvining priniple suh as�re�etion�. More seriously, the arti�ial restrition to �set-foring� is essential for Woodin'swork: for any large ardinal property there are methods beyond �set-foring� whih anmake a true projetive statement false while preserving the truth of that large ardinalproperty. In fat one an easily deide CH via a simple and onsistent power set maximalitypriniple, provided one is willing to restrit to a speial type of set-foring extension. Thusthe main goal is to obtain suh a priniple without any set-foring restrition at all.4This is alled the strong inner model hypothesis (see [2℄), a version of the inner modelhypothesis whih allows statements with �absolute� parameters. In [2℄ it is formulatedwithout ordinal maximality, but a formulation restrited to ordinal maximal universes isalso possible. 7



Thus I pose the following question: Could it be that to suessfully gener-alise what is known about �rst-order model theory to larger logis, one needsa partiular extension of ZFC? Could there be a similar situation in other�elds, where a partiular extension of ZFC is required to suessfully gener-alise urrent theory? And after disovering all of this, ould it be that onepartiular extension of ZFC is optimal for suess aross all of these �elds?I really don't know how things will go. But I do think it is worthwhilefor set-theorists to keep the possibility in mind that future judgments aboutwhih axioms of set theory are to be embraed may ome not from withinset theory itself, but from other areas of mathematis and logi. Set theoryhas for many deades provided a very useful foundation for mathematis. Itwould be both satisfying and appropriate if these other areas would returnthe favour by o�ering set theory new riteria for the hoie of axioms, therebyhelping to resolve the di�ulties posed by Gödel inompleteness.Literatur[1℄ Arrigoni, T. and Friedman, S.D., The hyperuniverse program, Bulletinof Symboli Logi, Volume 19, Number 1, Marh 2013, pp.77�96.[2℄ Friedman, S.D., Internal Consisteny and the Inner Model Hypothesis,Bulletin of Symboli Logi, 2006, vol.12, no.4, pp.591-600.[3℄ Koellner, Peter, On Re�etion Priniples, Annals of Pure and AppliedLogi, 2009, vol.157, no.2-3, pp.206-219.[4℄ Donald A. Martin and John R. Steel, A Proof of Projetive Determinay,Journal of the Amerian Mathematial Soiety , Vol. 2, No. 1 (Jan.,1989), pp. 71-125.[5℄ Colin MLarty, What does it take to prove Fermat's Last Theorem?Grothendiek and the logi of number theory, Bulletin of Symboli Logi,Vol. 16, No. 3 (September 2010), pp. 359-377.[6℄ Shelah, S., Logial Dreams, Bulletin of the Amerian Mathematial So-iety, 2003, vol.40, no.2, pp. 203�228.[7℄ Woodin, W. Hugh, The realm of the in�nite, in In�nity. New researhFrontiers, pp. 89�118, Cambridge University Press, 2009.8


