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A result of great significance in the theory of forcing is the following.

Theorem 1 (Corollary to Jensen’s Coding Theorem) There is an L-definable
class forcing P such that if G is P -generic over L then:

(a) 〈L[G], G〉 is a model of ZFC, and cofinalities are the same in L as in
L[G].
(b) Some real in L[G] is not set-generic over L.

A natural question to ask is whether this result has an analogue in the
context of large cardinals. The purpose of this article is to provide such an
analogue, taking into account difficulties raised by the existence of Woodin
cardinals.

To describe the latter difficulties we consider the forcing P , described as
follows. Let δ be inaccessible and consider the language L(δ):
(a) n ∈ R belongs to L(δ), where n ∈ ω and R denotes a real.
(b) ϕ ∈ L(δ) → ∼ ϕ ∈ L(δ).
(c) Φ ⊆ L(δ), Card Φ < δ → ∧Φ ∈ L(δ).

Of course ∧Φ is to be interpreted as the conjunction of the sentences in Φ.
A set of sentences Φ ⊆ L(δ) is consistent iff in some (set-generic) extension
of V , some real R satisfies each sentence in Φ. A single sentence ϕ ∈ L(δ)
is consistent iff {ϕ} is consistent. We endow L(δ) with the ordering: ϕ ≤ ψ
iff ∧{ϕ,∼ ψ} is not consistent. Then P is the pre-ordering (L+(δ),≤) where
L+(δ) = {ϕ ∈ L(δ) | ϕ is consistent}.

In a weak sense, every real outside of V is P -generic over V : Let R be a
real and let G(R) be {ϕ ∈ L+(δ) | R satisfies ϕ}.
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Lemma 2 (a) ϕ, ψ ∈ G(R) → ϕ, ψ are compatible in P = 〈L+(δ),≤〉.
(b) ϕ ≤ ψ, ϕ ∈ G(R) → ψ ∈ G(R).
(c) Suppose that A ⊆ L+(δ) is predense (i.e., every ϕ ∈ L+(δ) is compatible
with some element of A). If Card A < δ then G(R) ∩A 6= ∅.

Proof. (a) and (b) are clear. For (c), note that as Card A < δ we may form
the sentence ϕ = ∧{∼ ψ | ψ ∈ A} ∈ L(δ). If G(R) ∩ A = ∅ then R satisfies
ϕ and hence ϕ is an element of L+(δ) incompatible with each element of A.
This contradicts our assumption that A is predense. 2

Of course full P -genericity over V would require that (c) hold without the
assumption Card A < δ. If P is δ-cc (i.e., antichains in P have cardinality
< δ) then we do achieve full P -genericity, as this cardinality assumption
becomes superfluous. We next show how to modify P to a δ-cc forcing,
following an idea of Woodin.

Definition. Suppose that A ⊆ Vδ and κ < δ. Then κ is A-strong below δ
iff for all α < δ there is an elementary embedding j : V → M with critical
point κ such that α < j(κ) and A ∩ Vα = j(A) ∩ Vα.

For any A ⊆ Vδ in V and κ < δ let T (κ,A) consist of all sentences

∧{∼ ϕ | ϕ ∈ A ∩ Vκ} → ∧{∼ ϕ | ϕ ∈ A ∩ Vα}

as α varies over the ordinals less than δ. Now suppose that R is a real
(outside of V ) and κ is A-strong below δ in V [R]. Then T (κ,A) is contained
in G(R) and hence T (κ,A) is consistent. More generally, suppose that R
preserves A-strength below δ over V for every A ⊆ Vδ in V , in the sense that
whenever κ < δ and κ is A-strong below δ in V , then κ is A-strong below δ
in V [R]. Then T =

⋃
{T (κ,A) | A ⊆ Vδ, A ∈ V , κ is A-strong below δ} is

contained in G(R) and hence T is consistent. Let PT = 〈L+
T (δ),≤T 〉 where

L+
T (δ) = {ϕ ∈ L(δ) | T ∪ {ϕ} is consistent} and ϕ ≤T ψ iff T ∪ {ϕ,∼ ψ} is

not consistent.

Claim. Suppose that for every A ⊆ Vδ there is κ < δ such that κ is A-strong
below δ. Then PT is δ-cc.

Proof. Suppose that A ⊆ L+
T (δ) is predense in PT and choose κ < δ, κ

A-strong below δ. We assert that A∩Vκ is predense in PT : If not, then some
ψ ∈ PT is PT -incompatible with each ϕ ∈ A ∩ Vκ; but as T (κ,A) ⊆ T , we
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then have that ψ is PT -incompatible with every ϕ ∈ A, contradicting the
predensity of A. It follows that PT has no antichain of cardinality δ. 2

Definition. δ is a Woodin cardinal if for every A ⊆ Vδ there is κ < δ such
that κ is A-strong below δ.

We have shown:

Theorem 3 (Woodin) Suppose that R is a real, V is an inner model, δ is a
Woodin cardinal in V and R preserves A-strength below δ over V for every
A ⊆ Vδ in V . Then R is set-generic over V .

The previous result would appear to raise a serious obstacle to extending
Jensen’s Theorem past the level of a Woodin cardinal. Fortunately, the
notion of Woodin cardinal has an alternative definition, which can be used
to overcome this obstacle. Let C be a CUB subset of κ and for α in C, let
α+

C denote the C-successor to α. We say that κ is C-strong iff there is an
elementary embedding j : V →M with critical point κ such that all subsets
of κ+

j(C) belong to M . Then δ is Woodin iff for every CUB subset C of δ there

is a κ < δ in Lim C which is C ∩ κ-strong. (See [3].) We can additionally
require that some j witnessing the C ∩ κ-strength of κ satisfy κ+

j(C) < δ, and
that the set of such κ be stationary in δ.

Using this second definition of Woodinness we establish the following
large-cardinal analogue of Theorem 1.

Theorem 4 Suppose that V is an “L-like” model. There is a V -definable
class-forcing P such that if G is P -generic over V then:

(a) 〈V [G], G〉 is a model of ZFC, and cofinalities are the same in V as in
V [G].
(b) If κ is Woodin in V then κ is Woodin in V [G].
(c) Some real in V [G] is not set-generic over V .

This result is proved by constructing a class-forcing which “preserves” a
witness in V to the second definition of Woodinness. Witnesses to the first
definition of Woodinness in V [G] cannot be definable in V , by Theorem 3.

We next clarify the above hypothesis on V .
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Condensation, 2 and Extenders

“L-like” models obey suitable forms of Gödel’s Condensation Principle
and Jensen’s 2 Principle. As essentially the only known examples of such
models are in fact models built from extenders, we begin with a definition of
good extender model.

An inner model M is rigid if there is no elementary embedding from M
to itself, other than the identity. Extender models arise naturally when one
attempts to construct an “L-like” rigid model.

Suppose that L is not rigid and j : L→ L (i.e., j is a nontrivial elementary
embedding from L to L). We may hope to move one step closer to rigidity
by replacing L by L[j ↾ Lα], where α is least so that j ↾ Lα /∈ L. A useful
fact is that α is the ordinal (κ+)L, where κ is the critical point of j.

The function j ↾ Lα, where α = (κ+)L is called the extender derived from
j. Thus one hopes to successively add extenders until the process converges
upon a model that is either rigid or contains the extender derived from some
embedding of it to itself. In the latter case this model has a “superstrong
cardinal”, a property much stronger than Woodinness.

The models that arise in this construction are called extender models.

Definition. An extender sequence is a sequence E = 〈Eν | ν ∈ ORD〉 such
that for all ν, Eν is either empty or:

Eν : LE
κ+ → LE

ν

is cofinal and Σ1-elementary, where κ is the critical point of Eν , κ
+ denotes

κ+ of LE
ν and for any η, LE

η denotes the structure 〈Lη[E], E ↾ η〉.

Definition. An extender model is a model LE = 〈L[E], E〉 where E is an
extender sequence. An initial segment of LE is a structure of the form LE

≤α =
〈LE

α , Eα〉, α ∈ ORD.

We cannot expect extender models to obey the following analogue of the
strong form of condensation which holds in L: If H is Σ1-elementary in LE

≤α

then H is isomorphic to an initial segment of LE. Indeed this fails whenever
LE contains a measurable cardinal. However one can have the weaker form of
condensation stated next. For 0 < n < ω, the Σn projectum of LE

≤α denotes
the least ordinal γ such that for some x ∈ LE

≤α, LE
≤α is the Σn Skolem hull in

itself of γ ∪ {x}.
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Condensation. (a) Suppose that κ is a cardinal of LE , κ is the Σ1 projectum
of LE

≤α, x belongs to LE
α and LE

≤α is the Σ1 Skolem hull in itself of κ∪{x}. For

γ < κ let H(γ, x) denote the Σ1 Skolem hull of γ∪{x} in LE
≤α and H(γ, x) its

transitive collapse. Then for sufficiently large γ < κ, if γ is the Σ1 projectum
of H(γ, x) then H(γ, x) is an initial segment of LE . (b) If γ < κ are cardinals
of LE , 0 < n ∈ ω and H is the Σn Skolem hull of γ in LE

≤κ then the transitive
collapse of H is an initial segment of LE .

For an uncountable LE-cardinal κ, the set of γ less than κ such that γ
equals the Σ1 projectum of H(γ, x) is a CUB subset of κ (containing all
uncountable cardinals less than κ). Thus Condensation implies GCH via the
Gödel property : If x ⊆ κ and x belongs to LE , then x belongs to LE

α for some
α less than κ+ of LE .

Good extender models also obey a suitable form of Jensen’s 2 Principle.
A good 2-sequence at singular cardinals for LE is an LE-definable sequence
〈Cα | α a singular cardinal of LE〉 such that for each singular cardinal α of
LE :

1. Cα is CUB in α of ordertype less than α.
2. If ᾱ is a limit point of Cα then Cᾱ = Cα ∩ ᾱ.
3. Cα is definable over LE

≤β(α) via a definition independent of α, where β(α)

is the least ordinal β such that α is singular in LE
β+1.

4. Suppose that β ≤ β(α), x ∈ LE
β and LE

≤β is the Σ1 Skolem hull in itself of
α ∪ {x}. If unboundedly many ᾱ < α satisfy ᾱ = α ∩ the Σ1 Skolem hull of
ᾱ ∪ {x} in LE

≤β then sufficiently large elements of Cα have this property.

In summary, an extender model is good iff it obeys Condensation and
possesses a good 2-sequence at singular cardinals.

By combining work of [2], [4] and [5], we have:

Fact. If there is a Woodin limit of Woodin cardinals then there is a good
extender model with a Woodin limit of Woodin cardinals.

An L-like model is a model with the above goodness properties, but which
is not necessarily built from extenders. Such a model is of the form LA =
L[〈Aα | α ∈ ORD〉], where the structure LA

≤α = 〈LA
α , Aα〉 is amenable for

each α, such that Condensation and 2 at Singulars hold precisely as above,
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with E replaced everywhere by A. By relativising the above Fact to a real
R, we obtain L-like models containing R with Woodin cardinals.

Suppose that LA is L-like. The extender E derived from the embedding
j : LA → M is the restriction of j to LA

α , where α = κ+ of LA and κ is
the critical point of j. We also write κ(E) = κ. An extender in LA is an
extender derived from some embedding LA → M which belongs to LA. Let
E be an extender in LA as above and let ν be the supremum of the range of
E on α. Suppose that κ+ ≤ σ ≤ E(κ). Then we can form a new extender
F = E ↓ σ as follows: Let π : H(σ) ≃ LĀ

ν̄ where H(σ) is the Σ1 Skolem hull
of σ ∪Range (E) in LA

ν . Then F : LA
α → LĀ

ν̄ is the composition πE. Clearly
F is cofinal and Σ1 elementary, and κ is the critical point of F . The true
length of E is the least σ such that E ↓ σ = E. Note that if σ = E(κ) then
E ↓ σ = E, so true length is always defined. For a set T of extenders, we
define T ↓ σ to be the set of all E ↓ σ, E ∈ T .

If E is an extender in LA derived from some j : LA → M , then there is
a canonical extension E∗ of E to LA (possibly differing from j): Let κ be
the critical point of E and consider U = {(f, a) | f : LA

κ → LA, a ∈ LA
E(κ)}.

Set (f, a) =∗ (g, b) iff (a, b) ∈ E({(u, v) | f(u) = g(v)}) and (f, a) ∈∗ (g, b)
iff (a, b) ∈ E({(u, v) | f(u) ∈ g(v)}). Then Ult(LA, E) = (U/ =∗,∈∗) is
well-founded and set-like, so we identify it with its transitive collapse. The
desired extension E∗ of E is defined by E∗(x) = [fx, 0] where fx is the
constant function with value x and [f, a] denotes the =∗ equivalence class of
(f, a). A useful fact is: [f, a] = E∗(f)(a). In the sequel we shall identify E
with E∗, and therefore write E(x) instead of E∗(x) for arbitrary elements x
of LA.

Class Forcing in the Presence of Woodin Cardinals

We prove Theorem 4. Suppose that V = LA is an L-like model and fix a
good 2-sequence at singular cardinals 〈Cα | α a singular cardinal〉.

For a cardinal α we define an α-extender to be an extender E (derived
from some embedding V → M) of true length α such that all bounded subsets
of α belong to UltE = Ult(V,E), and A agrees with E[A] below α (where
E[A] denotes

⋃
{E(A ↾ α) | α ∈ ORD}). We write α(E) = α. An extender
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is tight iff it is an α-extender for some cardinal α and its critical point is not
Woodin.

Steering Ordinals. Fix an uncountable cardinal α. By induction on η in
[α, α+) we define ordinals µ<η, µη

k, k ∈ ω and µη as follows: µ<α = α, and for
η > α, µ<η is the supremum of the µη′

, α ≤ η′ < η. We define µη
0 to be the

least µ greater than µ<η such that µ is a multiple of α and α is the largest
cardinal of LA

µ . µη
k = µη

0 + α · k for k ∈ ω and µη = µη
0 + α · ω.

Canonical CUB Sets. Suppose that α is an uncountable limit cardinal, η ∈
[α, α+) is a multiple of α and k ∈ ω. We define the canonical CUB subset
Cη,k

α of α to be {ᾱ < α | ᾱ = α ∩ the Σ1 Skolem hull of ᾱ∪{η} in LA
≤µ

η
k
} if this

set is unbounded in α: otherwise we take Cη,k
α to be Cα. The canonical CUB

subsets of α carry the natural ordering: Cη0,k0
α ≤ Cη1,k1

α iff η0 < η1 or (η0 = η1

and k0 ≤ k1). If this holds, then a final segment of Cη1,k1
α is contained in Cη0,k0

α

(using property 4 of the good 2-sequence 〈Cα | α a singular cardinal〉 when
Cη1,k1

α equals Cα).

We consider the following class T of tight extenders. By induction on the
uncountable cardinal α define Eα and Dα as follows. For α a limit cardinal,
Dα is the least canonical CUB subset D of α, if it exists, such that D 6= Cα

and for some α0 < α, no Eβ, α0 < β < α witnesses the D ∩ κ(Eβ)-strength
of κ(Eβ). For α a successor cardinal, Eα is the LA-least tight extender E, if
it exists, such that α(E) = α and:

1. κ(E) < β < α, Eβ defined → κ(E) < κ(Eβ).
2. E witnesses the Dκ(E)-strength of κ(E).

Let T be the class of all Eα, α an uncountable successor cardinal, as defined
above. Then we claim that the Woodinness of each Woodin cardinal δ is
witnessed by extenders in T (via the second definition of Woodinness). If
not, then let C be the least canonical CUB subset of δ such that for some
δ0 < δ, no Eβ , δ0 < β < δ witnesses the C ∩ κ(Eβ)-strength of κ(Eβ).
Clearly C exists by the failure of T to witness the Woodinness of δ and the
fact that any CUB subset of δ contains a final segment of a canonical one.
By Condensation (a), {α | α < δ, α < β < δ → κ(Eβ) ≥ α (when Eβ is
defined) and C ∩ α = Dα} contains a CUB set. As δ is Woodin, this CUB
set contains a κ > δ0 which is C ∩ κ-strong (via an extender preserving A),
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and clearly the least such κ is not Woodin (as witnessed by C∩κ). Moreover
κ < β < δ → κ 6= κ(Eβ) (when Eβ is defined), else Eβ witnesses the Dκ-
strength of κ = κ(Eβ), contrary to the choice of C. Let E be tight and
witness the C ∩ κ-strength of κ. Then E is a candidate for Eα(E), which
therefore is defined and witnesses the C ∩ κ-strength of κ, contradicting the
choice of C and δ0.

Note that T is uniform in the sense that E ∈ T → T and E[T ] (= T
as defined in UltE) have the same extenders of true length less than α(E),
and is nested in the sense that E0 6= E1 in T , κ(E0) ≤ κ(E1) → either
κ(E0) < α(E0) < κ(E1) < α(E1) or κ(E0) < κ(E1) < α(E1) < α(E0).

If α is a cardinal then α is overlapped by the tight extender E iff κ(E) <
α < α(E). For each α there are at most finitely many E ∈ T which overlap
α, as T is nested. If E overlaps α then we define α+

E to be
⋃
{E(f)(α) |

f : κ(E) → κ(E), f(γ) < γ+ for each γ < κ(E)}, an ordinal less than α+,
and α∗

E =
⋃
{E(f)(α) | f : κ(E) → LA

κ(E), f(γ) a subset of [γ+, γ++) of

cardinality ≤ γ for each γ < κ(E)}, a subset of α++ of cardinality α. We
say that α is overlapped by T iff α is overlapped by some E ∈ T . (Note:
Although α+

C was already defined for a CUB set C, there is little danger of
confusion with the notation α+

E for an extender E.)

For α an uncountable limit cardinal, let CT
α denote the set of cardinals

ᾱ less than α which are overlapped by the same extenders in T as α; using
the nestedness of T , this is a CUB subset of α whose successor elements
are successor cardinals. Note that as T ∩ LA

α is definable over LA
α , a final

segment of Cα,0
α is contained in CT

α , unless α is singular and Cα,0
α = Cα. In

the latter case we redefine Cα by replacing the current Cα by Cα∩C
T
α , if this

is unbounded in α, and otherwise by the LA-least unbounded subset of CT
α

of ordertype ω consisting of successor cardinals. This new definition of Cα

does not alter our above definition of T , satisfies the goodness properties 1-3
and has the additional property that a final segment of Cα is contained in
CT

α for each singular cardinal α. (Goodness property 4 is not needed in the
special case Cα,0

α = Cα.)

Coding Apparatus. Fix an uncountable cardinal α. For η ∈ [α, α+) the
coding structure Aη is defined to be LA

≤µη0+η , where η0 is least so that Eα,
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if defined, belongs to LA
µη0 . For η ∈ [α, α+) a multiple of α and i < α set

Hη(i) = the Σ1 Skolem Hull of i ∪ {η} in Aη and f η(i) = the ordertype of
Hη(i) ∩ ORD. For α a successor cardinal: Bη = {i < α | i = Hη(i) ∩ α},
bη = Range f η ↾ Bη and for α ≤ η = η̄ + δ, where η̄ is a multiple of α and
δ < α, bη = {γ + δ | γ ∈ bη̄}.

For an uncountable limit cardinal α, η ∈ [α, α+) a multiple of α and
k ∈ ω we define the coding domain Bη,k

α : If Dα is of the form Cη0,k0
α < Cη,k

α

then Bη,k
α consists of all (ᾱ+

Dα
)+
CT

α
, ᾱ ∈ Cη,k

α . Otherwise Bη,k
α consists of all

ᾱ+
CT

α
, ᾱ ∈ Cη,k

α . Using the fact that Dα is canonical, it follows that if η0 < η1

or (η0 = η1 and k0 < k1) then a final segment of Bη1,k1
α is contained in Bη0,k0

α .

Strings. Strings at an infinite cardinal α are functions s : |s| → 2, where
α ≤ |s| < α+, |s| is a multiple of α, s belongs to A|s| and for each η,
α ≤ η < |s|, either s ↾ η belongs to Aη or s(η) = 0. We write µs, µ<s, As,
A<s, . . . for µη, µ<η, Aη, A<η, . . . where η = |s|. Let Sα denote the collection
of strings at α.

A Partition of the Ordinals. Let B, C and D denote the classes of ordinals
congruent to 0, 1 and 2 mod 3, respectively. For any ordinal α and X = B,
C or D we write αX for the α-th element of X, when X is listed in increasing
order. For S a set of ordinals, SX = {αX | α ∈ S}.

The Successor Coding. Suppose α is an infinite cardinal, s ∈ Sα+ . Rs

consists of all pairs (t, t∗) where t belongs to Sα and t∗ is a subset of [α+, |s|)
of cardinality at most α. Write t∗,i = {η ∈ t∗ | s(η) = i}. (The ordering of Rs

is not specified here, but is embedded into our later definition of extension
for the class P of forcing conditions.)

We come next to the definition of the limit coding, which makes use of
“coding delays”.

Limit Precoding. Suppose that α is an uncountable limit cardinal and s
belongs to Sα. Let k be least so that s belongs to LA

µs
k
. Write Ãs = LA

µs
k
.

Now X precodes s if X is the Σ1 theory of Ãs with parameters from α∪{s},
viewed as a subset of α.

Limit Coding. Suppose s ∈ Sα, α is an uncountable limit cardinal and
p = 〈(pβ, p

∗
β) | β ∈ Card ∩ α〉, where pβ ∈ Sβ for each β ∈ Card ∩ α and
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Card denotes the class of infinite cardinals. We wish to define “p codes
s”. First we define a sequence 〈sγ | γ ≤ γ0〉 of elements of Sα as follows.
Let s0 = ∅. For limit γ ≤ γ0, sγ =

⋃
{sδ | δ < γ}. Now suppose sγ is

defined. Then for β ∈ Card ∩ α consider f
sγ
p (β) = least δ ≥ f sγ(β) such

that pβ(δC) = 1; if the latter is defined, then also define Xβ ⊆ β by: ξ ∈ Xβ

iff pβ((f
sγ
p (β) + 1 + ξ)C) = 1. Now set γ0 = γ unless there is an η > |sγ|

and k ∈ ω such that for some final segment B of Bη,k
α , f

sγ
p is defined on

B, f
sγ
p ↾ B ∈ Aη and for some X ⊆ α in Aη, Xβ = X ∩ β for β ∈ B.

There can be at most one such X, using the fact that if η0 < η1 or (η0 = η1

and k0 < k1) then a final segment of Bη1,k1
α is contained in Bη0,k0

α . If Even
(X) = {ξ | 2ξ ∈ X} precodes an element t of Sα extending sγ of length η
then set sγ+1 = t. Otherwise let sγ+1 be sγ ∗ ~0, with ~0 of length η − |sγ|.
(The notation sγ+1 = sγ ∗ ~0 means that sγ+1 extends sγ and sγ+1(η) = 0 for
|sγ| ≤ η < |sγ+1|.) Now p codes s iff s = sγ for some γ ≤ γ0.

A real preserves the extender E iff the canonical embedding V → UltE

extends to an elementary embedding V [R] → UltE [R]. We show that there
is a definable ZFC-preserving class forcing which adds a non set-generic,
cofinality-preserving real R preserving the extenders in T . Moreover, for δ
inaccessible in V , every CUB subset of δ in V [R] contains a CUB subset in
V . It follows that Woodinness is preserved by R.

We are about to define P , the class of forcing conditions. To ensure that
extenders in T are preserved, we impose a strong Preservation Requirement
on conditions in P . To accomodate this Requirement, we must use a special
notion of extension, in which values not “fixed” by a condition are allowed to
change when the condition is extended. However, making use of the fact that
the critical points of extenders in T are not Woodin, we can demand that
values in the interval [α, α+) will not change if the condition “recognizes”
that the critical points of all extenders in T overlapping α are non-Woodin.
This restriction is needed to show that conditions in the generic converge.

The Conditions. Let Card ′ denote the class of all uncountable limit cardi-
nals. A condition in P is a sequence p = 〈(pα, p

∗
α) | α ∈ Card , α ≤ α(p)〉

where α(p) ∈ Card is not overlapped by T and:

(a) pα(p) ∈ Sα(p) and p∗α(p) = ∅.

(b) For α ∈ Card ∩ α(p): p(α) = (pα, p
∗
α) ∈ Rpα+ .
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(c) For α ∈ Card ′, α ≤ α(p): p ↾ α codes pα and belongs to Apα.
(d) (Restraint Requirement) For α ≤ α(p), α inaccessible in Apα: There
exists a CUB C ⊆ α, C ∈ Apα such that β ∈ C → p∗β = ∅.
(e) (Preservation Requirement) Suppose that E belongs to T , α ≤ α(p) and
α is overlapped by E.
(e0) pα extends E(p)α.
(e1) If |E(p)α| ≤ γ < |pα| where for some ξ ∈ α∗

E , γ belongs to bξE (= bξ as
defined in UltE), then pα(γB) = 0, unless E(p)α+(ξ) = 1 and α+ is p-stable.

We define p-stability as follows: An ordinal γ ∈ [α, α+) is α-large iff
γ ≥ α+

E for each E ∈ T overlapping α. p is large up to α iff |pβ| is β-large for
all β ∈ Card ∩ α+. Then α ∈ Card ∩ α(p)+ is p-stable iff p is large up to α
and κ(E) is not Woodin in Apκ(E) for all E ∈ T overlapping α.

Extension of conditions is defined as follows. An inaccessible cardinal
α ≤ α(p) is p-Woodin iff it is Woodin in Apα. Then p ≤ q iff α(p) ≥ α(q)
and for α ∈ Card ∩ α(q)+:

(∗)0 |pα| ≥ |qα|, p
∗
α ⊇ q∗α.

(∗)1 γ ∈ [α, |qα|) → pα(γ) = qα(γ), unless γ < |E(p)α| for some E ∈ T
overlapping α.
(∗)2 γ ∈ bη, η ∈ q∗,0α , α q-stable, |qα| ≤ γ < |pα|, γ α-large → pα(γB) = 0.
(∗)3 Suppose that α is inaccessible but not q-Woodin and q is large up to α.
Then there exists a CUB C ⊆ α in Apα such that |pβ| = |qβ|, p

∗
β = q∗β for

β ∈
⋃
{(ᾱ, ᾱ+

Dα
] | ᾱ ∈ C}.

Lemma 5 Suppose that α ∈ Card ∩α(q)+ is q-stable and p extends q. Then
pα extends qα.

Proof. It suffices to show that E(p)α = E(q)α for all E ∈ T overlapping
α. Requirement (∗)3 from the definition of extension implies that E(p)α and
E(q)α have the same length. So E(p)α, E(q)α can only differ if F (E(p))α,
F (E(q))α are incompatible for some F ∈ E[T ] overlapping α. But by in-
duction we may assume that F (p)α = F (q)α for all F ∈ T overlapping α
which satisfy α(F ) < α(E). Therefore F (E(p))α, F (E(q))α are compatible
for all F ∈ E[T ] overlapping α, as F (p)α, F (q)α extend F (E(p))α, F (E(q))α,
respectively, and F belongs to T by the uniformity of T . 2

Lemma 6 The ordering of conditions is transitive.
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Proof. Suppose that p ≤ q ≤ r. Then (∗)0 is clear for the pair p, r. Note
that p ≤ q → every q-stable cardinal is p-stable and |E(p)α| ≥ |E(q)α|
whenever α ∈ Card ∩ α(q)+ and E ∈ T overlaps α, since |pα| ≥ |qα| for all
α ∈ Card ∩ α(q)+. Thus (∗)1 holds for p, r. Using Lemma 5, q∗,0α ⊇ r∗,0α for
r-stable α and therefore (∗)2 holds for p, r. Finally, (∗)3 holds for p, r since
the intersection of CUB sets is CUB. 2

To state the proper form of extendibility for P we must take into account
requirement (∗)3 and therefore introduce the notion of a p-witness. This is a
function w with the following properties:

1. The domain of w consists of all inaccessible α ≤ α(p) such that α is not
p-Woodin and p is large up to α.
2. w(α) is a CUB subset of {β ∈ Dα | β is not p-Woodin} for each α ∈
Dom w.
3. For all α ∈ Card ∩ α(p)+, w ↾ α+ ∈ Apα.

The support of a p-witness w, written supp (w), is the union of all intervals
(ᾱ, ᾱ+

Dα
], where ᾱ belongs to w(α) and α is in the domain of w.

Lemma 7 (Extendibility) Suppose that p belongs to P , β ∈ Card ∩ α(p)+

and s ∈ Sβ extends pβ. Also suppose that |s| is β-large, X ⊆ β belongs to
As, w is a p-witness and for |pβ| ≤ γ < |s|:

(a) If β is overlapped by E ∈ T and γ belongs to bξE where ξ ∈ β∗
E then

s(γB) = 0, unless E(p)β+(ξ) = 1 and β+ is p-stable.
(b) γ ∈ bη, η ∈ p∗,0β , β+ p-stable, γ β-large → s(γB) = 0.

Then there exists q ≤ p in P such that |qβ| = |s|, X ∩ γ ∈ Aqγ for all
γ ∈ Card ∩ β+ not in supp (w ↾ β+), qβ and s are the same above the
maximum of {|E(q)β| | E ∈ T overlaps β} and for all α ∈ Card ∩ (β, α(p)],
qα and pα are the same above the maximum of {|E(q)α| | E ∈ T overlaps α}.

Moreover we can require that q be large up to β.

Proof. By induction on β ∈ Card ∩α(p)+. The result is clear if β equals ω,
as ω is not overlapped in T and (b) guarantees that we can extend pω to s
without violating (∗)2 from the definition of extension. If β is an uncountable
successor cardinal then let β̄ be the cardinal predecessor to β and choose
s̄ = pβ̄ ∗ ~0 ∈ Sβ̄ of β̄-large length so that X ∩ β̄ ∈ As̄. Apply induction
to p, s̄, X ∩ β̄, w to obtain q̄ ≤ p. Then obtain q from q̄ by redefining q̄β
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to be the same as s above the maximum of {|E(q̄)β | | E ∈ T overlaps β}.
The hypotheses on s guarantee that the resulting q is the desired condition
extending p.

Now suppose that β is an uncountable limit cardinal not overlapped by T .
Let k be large enough so that p ↾ β, s, X∩β, Cβ (if β is singular in As), Dβ (if
β is not Woodin in As) and w ↾ β+ belong to A = LA

µs
k
. Choose Y ⊆ β such

that Even (Y ) = {ξ | 2ξ ∈ Y } precodes s and Odd (Y ) = {ξ | 2ξ + 1 ∈ Y }
is the Σ1 theory of A with parameters from β ∪ {s}, viewed as a subset of
β. For γ ∈ Card ∩ β+, let Aγ be the transitive collapse of H(γ) = Σ1

Hull of γ ∪ {s} in A and let g(γ) = γ+ of Aγ . (If Aγ � γ+ does not
exist, then g(γ) = ORD(Aγ). When γ = β, we have Aγ = H(γ) = A.)
Using Condensation (a), choose β0 < β large enough so that Aγ is an initial

segment of LA for γ ∈ Cs,k
β ∩ (β0, β]. Also suppose that p ↾ β, s,X∩β, w ↾ β+

belong to H(β0) and if Cs,k
β = Cβ then β0 > ordertype Cβ.

We first define q̄, a preliminary version of q. Set q̄β = s. For γ ∈

Card ∩ [β+
0 , β): If Cs,k

β 6= Cβ and γ ∈ Lim Cs,k
β then q̄γ = sγ where Even

(Y ∩ γ) precodes sγ ∈ Sγ; if Cs,k
β = Cβ and γ ∈ Lim Cβ then q̄γ = pγ ∗~0 with

~0 of length g(γ); and if γ ∈ Bs,k
β then q̄γ = pγ ∗ ~0 ∗ 1 ∗ (Y ∩ γ)C where ~0 has

length g(γ)+1 (and (Y ∩γ)C has length γ). For γ ∈ Card ∩α(p)+ not falling
under the above cases, q̄γ = pγ. Also set q̄∗γ = p∗γ for all γ ∈ Card ∩ α(p)+.

We claim that q̄ obeys the requirements for being a condition, with the
exception of the Preservation Requirement (e0). We need only check that
q̄ ↾ γ belongs to Aq̄γ and codes q̄γ for γ ∈ Card ′ ∩ α(p)+. We may assume

that γ belongs to Lim Cs,k
β ∩ [β+

0 , β]. Note that g ↾ γ, Y ∩ γ and therefore

q̄ ↾ γ are definable over Aγ for γ ∈ Card ∩ β+, so for the first of these
properties it suffices to show Aγ ∈ Aq̄γ . But by choice of β0, Aγ is a proper
initial segment of Ag(γ) = Aq̄γ . Thus we have established the first of these
properties. For the second property, we must verify that there is ηγ > |pγ|

and kγ ∈ ω such that for some final segment Bγ of B
ηγ ,kγ
γ , f

pγ

q̄↾γ is defined on

Bγ, f
pγ

q̄↾γ ↾ Bγ ∈ Aηγ and for some Xγ ⊆ γ in Aηγ , Xδ = Xγ ∩ δ for δ ∈ Bγ ,

where for δ < γ, Xδ is defined by ξ ∈ Xδ iff q̄δ((f
pγ

q̄↾γ(δ) + 1 + ξ)C) = 1. If

γ = β then we may take ηγ , kγ, Bγ and Xγ to be |s|, k, Bs,k
β − β+

0 and Y ,
respectively, and in this case Even(Y ) precodes s, implying that q̄ ↾ β codes
s. Suppose that γ is less than β. If Cs,k

β 6= Cβ then we can similarly take |sγ|,
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k, B
sγ ,k
γ − β+

0 and Y ∩ γ, respectively, and in this case Even(Y ∩ γ) precodes
sγ, implying that q̄ ↾ γ codes sγ = q̄γ . Finally if Cs,k

β = Cβ note that γ is

singular in Ag(γ) and therefore we can choose k′ so that C
g(γ),k′

γ = Cγ; then
we may take ηγ, kγ, Bγ and Xγ to be g(γ), k′, Cγ−β

+
0 and Y ∩γ, respectively,

and in this case Even(Y ∩ γ) does not precode an element of Sγ . It follows
that q̄ ↾ γ codes pγ ∗~0, with ~0 of length g(γ) = g(γ) − |pγ|, as desired.

Let B ⊆ β be the closure of Bs,k
β ∩ [β+

0 , β) (i.e., B is the union of Bs,k
β

and Lim Cs,k
β ∩ (β0, β)). To obtain the desired q ≤ p, we inductively modify

q̄ ↾ γ+ for γ ∈ B to q ↾ γ+ such that q(γ) = q̄(γ) and q ↾ γ+∪p ↾ [γ+, α(p)]) is
a condition satisfying the Growth Requirement up to γ: For δ in Card ∩ γ+,
|qδ| is δ-large, and either δ belongs to supp (w ↾ γ+) or X ∩ δ ∈ Aqδ . If γ =
minB then we apply induction to p, q̄γ, X ∩ γ, w0, where w0(α) = w(α) for
α ∈ Dom w ∩γ+ and w0(α) = w(α)−γ+ for α ∈ Dom w −γ+, to ensure the
Growth Requirement up to γ. Suppose that γ is a successor element of B and
γ0 is its B-predecessor. It is possible that γ0 is the critical point of an extender
E ∈ T . E is unique and must satisfy α(E) < γ. In this case we modify
q̄ ↾ (γ0, α(E)] = p ↾ (γ0, α(E)] to q′ ↾ (γ0, α(E)] by requiring q′δ to extend
E(q ↾ γ0)δ for δ ∈ Card ∩ (γ0, α(E)], thereby ensuring the Preservation
Requirement (e0) with respect to E. As by induction our modified q ↾ γ+

0

satisfies the Preservation Requirement with respect to all E ∈ T , it follows
that E(q ↾ γ+

0 ) satisfies the Preservation Requirement with respect to all
F ∈ E[T ], and therefore by the uniformity of T , with respect to all F ∈ T ,
α(F ) < α(E). As q̄ agrees with p on the interval (γ0, α(E)] and p satisfies
the Preservation Requirement, it follows that Preservation Requirement (e0)
will hold for q ↾ γ+

0 ∪ q′ ↾ (γ0, α(E)] with respect to all extenders in T .
Preservation Requirement (e1) also holds for q ↾ γ+

0 ∪ q′ ↾ (γ0, α(E)] as it
holds for q̄, and the modifications for the purpose of ensuring Preservation
Requirement (e0) do not affect Preservation Requirement (e1). Now apply
induction to q ↾ γ+

0 ∪ q′ ↾ (γ0, α(E)] ∪ p ↾ (α(E), α(p)], q̄γ, X ∩ γ, w0, where
w0(α) = w(α) for α ∈ Dom w ∩ γ+ and w0(α) = w(α) for α ∈ Dom w − γ+,
to obtain the desired q ↾ γ+ satisfying the Growth Requirement up to γ,
without changing q ↾ γ+

0 ∪ q′ ↾ (γ0, α(E)] ∪ p ↾ (α(E), α(p)] at a cardinal
δ ∈ (γ0, (γ0)

+
Dβ

], if γ0 ∈ w(β) and |pδ̄| is δ̄-large for all δ̄ ∈ Card ∩ δ+.

Finally, if γ ∈ Lim B and we have inductively modified q̄ ↾ δ+, δ ∈ B ∩ γ in
the LA-least way to the desired q ↾ δ+, it follows that the resulting q ↾ γ+ =⋃
{q ↾ δ+ | δ ∈ B ∩ γ}

⋃
{〈γ, q̄(γ)〉} is as desired, since the definition of q̄
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guarantees that Y ∩ γ, and therefore the new q ↾ γ, belongs to Aqγ .
At the end of the above construction either we obtain a condition q or

some E ∈ T has critical point β; in the latter case we modify once more on
Card ∩ (β, α(E)] to ensure the Preservation Requirement. The resulting q
is a condition such that |qβ| = |s|, |qα| is α-large for all α ∈ Card ∩ β+,
X ∩ γ ∈ Aqγ for all γ ∈ Card ∩ β+ not in supp (w ↾ β+), qβ and s are
the same above the maximum of {|E(q)β| | E ∈ T overlaps β} and for
all α ∈ Card ∩ (β, α(p)], qα and pα are the same above the maximum of
{|E(q)α| | E ∈ T overlaps α}.

We must verify that the extension q ≤ p obeys property (∗)3. If α is
from the statement of (∗)3, we may assume that α belongs to Lim B. The
desired property for the pair p, q̄ is witnessed by the CUB set B ∩ α, as for
δ ∈ B ∩ α, δ+

Dβ
= δ+

Dα
is less than δ+

B , and therefore the extensions on B

avoid the intervals (δ, δ+
Dα

], δ in B ∩ α. Then to verify the result when α
belongs to Lim B for the pair p, q, note that α belongs to w(β) ∪ {β} and
by construction |pγ| = |qγ| for γ ∈ (ᾱ, ᾱ+

Dβ
], ᾱ ∈ B ∩ α, so B ∩ α is again a

witness to (∗)3.
Thus the only possible problem in verifying that q extends p is that as

a result of (∗)2, the restraint p∗γ may prevent us from making the extension
from pγ to qγ when qγ = sγ and Even (Y ∩ γ) precodes sγ. However if there
are unboundedly many such γ < β then β is inaccessible in Apβ and therefore
by the Restraint Requirement, p∗γ = ∅ for γ in a CUB subset of β in Apβ ,
which we may assume belongs to A. Thus for sufficiently large γ such that
Y ∩ γ precodes sγ, γ belongs to C and hence p∗γ = ∅. So q ≤ p on a final
segment of Card ∩ β, and by induction we may arrange that this holds on
all of Card ∩ β.

Finally, suppose that β is an uncountable limit cardinal overlapped by
T . Let κ be the largest critical point of an extender in T overlapping β.
By induction we can assume that p satisfies the Growth Requirement up to
κ, without altering pα above the maximum of {α+

E | E ∈ T overlaps α} for
α ∈ Card ∩ (κ, α(p)]. Now apply the argument from the previous case to
extend p to q on Card ∩ [κ+, β] (and on Card ∩ (β, α(E)], if some E ∈ T
has critical point β) to ensure the Growth Requirement up to β as well as
|qβ| = |s| (with qβ the same as s above the maximum of {β+

E | E ∈ T overlaps
β} and qα the same as pα above the maximum of {α+

E | E ∈ T overlaps α}
for α ∈ Card , β < α ≤ α(p)). 2
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Lemma 8 Suppose that G is P -generic and let Gω denote
⋃
{pω | p ∈ G}.

Then Gω is not set-generic over V .

Proof. For each infinite cardinal α, G converges on [α, α+) in the sense
that for some p ∈ G, every extension q of p satisfies qα ⊇ pα. This follows
from Lemma 5, as only finitely many E ∈ T overlap α and by Lemma 7
we can choose p ∈ G so that pβ is β-large for each β ∈ Card ∩ α(p)+

and the critical point κ(E) of each E ∈ T overlapping α is not Woodin in
Apκ(E). Let Gα denote

⋃
{pα | p ∈ G and α is p-stable}. We claim that

Gα+ is coded by Gα and for uncountable limit cardinals α, Gα is coded by⋃
{Gβ | β ∈ Card ∩α}. The first statement follows immediately from Lemma

7. The second statement follows from Lemma 7 together with the fact that
for uncountable limit cardinals α, the coding of pα by p ↾ α takes place at
cardinals in CT

α and the collection of conditions q ∈ P such that each β ∈ CT
α

is q-stable is dense in P . Thus G can be decoded from Gω. As Gα adds an
α+-Cohen set to V , it follows that Gω is not set-generic over V . 2

To establish cofinality-preservation for P we must consider nested wit-
nesses. A p-witness w is nested iff whenever ᾱ ∈ w(α), β̄ ∈ w(β), α ≤ β and
ᾱ ≤ β̄ < α then w(α) = w(β) ∩ α.

Lemma 9 For every condition p there exists a nested p-witness. Moreover,
if w is a nested p-witness and q extends p, then there is a nested q-witness
extending w.

Proof. We begin with the first statement. For α ≤ α(p), a (nested) p, α-
witness is a function satisfying the requirements of a nested p-witness, but
only defined on cardinals ≤ α. We show that if α < β ≤ α(p) then each p, α-
witness w can be extended to a p, β-witness w∗. This is proved by induction
on β. We may assume that p is large up to β. If β is not the limit of
inaccessibles then by induction we extend w up to the supremum γ of α and
the inaccessibles less than β and then, if β is non p-Woodin and inaccessible,
extend up to β itself with a witness w∗ such that w∗(β) only includes cardinals
greater than γ. Now assume that β is a limit of inaccessibles. If β is singular
then we can inductively choose end-extending p, γ-witnesses for γ ∈ Cβ above
α and take the union. If β is inaccessible and p-Woodin then we similarly
use a canonical CUB subset C of β consisting of p-Woodins. Finally, if β is
non p-Woodin and inaccessible, then choose a CUB D ⊆ Dβ − α such that
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β̄ ∈ D → β̄ is not p-Woodin and D ∩ β ∈ Apβ , using the inaccessibility
of β. Then successively extend w to elements of D, modifying choices if
necessary so that for β̄ ∈ D, the chosen witness between β̄ and β̄+

D only
include cardinals strictly greater than β̄. At inaccessible limit elements β̄ of
D, define w∗(β̄) to be D ∩ β̄. In this way we obtain the nestedness of the
resulting witness w∗.

Now suppose that w is a nested p-witness, q extends p and we wish to
define a nested q-witness w∗ extending w. If every inaccessible α ≤ α(q)
which is not q-Woodin with q large up to α is already in the domain of w
then we take w∗ = w. Otherwise let α be the least exception. Sufficiently
large elements of Dα are p-Woodin, using the fact that α is a p-Woodin
inaccessible which is not Woodin. Thus sufficiently large elements of Dα do
not belong to any w(β). Also note that sufficiently large γ < α do not belong
to w(β) for any β ≥ α, because α is p-Woodin and w is nested. And for each
β̄ < α, the set of β < α such that β̄ belongs to w(β) is bounded in α, else
by the nestedness of w, there would be a CUB subset of α consisting of non
p-Woodins. Thus as w ↾ α belongs to Apα, it follows that sufficiently large
elements ᾱ of Dα are closure points of w ↾ α, in the sense that for some
fixed α0 < α (independent of ᾱ), if β̄ belongs to w(β) ∩ (α0, ᾱ) for some β
then β is less than ᾱ. We therefore achieve the nestedness of w∗ up to α by
choosing w∗(α) to be a CUB subset D of Dα with sufficiently large minimum
such that ᾱ ∈ D → ᾱ is not q-Woodin and D ∩ ᾱ ∈ Apᾱ. Finally, combine
this argument with the argument used in the first part of this proof to show
that for α < β ≤ α(q), each q, α-witness can be extended to a q, β-witness,
compatibly with w. 2

Definition. Suppose that γ is an infinite successor cardinal and D ⊆ P is
open dense. A condition p ∈ P reduces D below γ iff for every q ≤ p there
exists r ≤ q such that r belongs to D, α(r) = α(q) and r(α) = q(α) for all
α ∈ Card ∩ [γ, α(q)].

Lemma 10 (Density Reduction) (a) If Di is open and dense on P for each
i < ω then for each p ∈ P there is a q ≤ p which belongs to each Di.
(b) If Di is open and dense on P for each i < γ where γ is an infinite
successor cardinal then for each p ∈ P there is a q ≤ p which reduces each
Di below γ.
(c) If Di is open and dense on P for each i < γ, where γ is inaccessible and
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not Woodin, then for each p ∈ P there are q ≤ p and a CUB D ⊆ γ such
that q reduces Di below (γ̄+

Dγ
)+ for γ̄ ∈ D and i < (γ̄+

Dγ
)+. (Note that Dγ is

the canonical CUB subset of γ defined earlier, and is unrelated to the Di’s.)
(d) If Di is open and dense on P for each i < γ where γ is Woodin then for
each p ∈ P there are q ≤ p and a CUB D ⊆ γ such that q reduces Di below
γ̄+ for γ̄ ∈ D and i < γ̄+.

Proof. In the statement of this Lemma, we intend that the sequence of
Di’s in each case be LA-definable. Choose n > 1 so that this sequence is Σn

definable over LA and let θ be a cardinal of cofinality greater than γ (greater
than ω in part (a)) such that LA

θ is Σn+1-elementary in LA. Let X be the
Σn theory of 〈LA

θ , y〉y∈LA
θ
, viewed as a subset of θ. Assume first that {p} is

Σn-definable in LA and the defining parameter for the sequence of Di’s is 0.

(a) Define a sequence of conditions pi ∈ P with associated nested pi-witnesses
wi and w∗

i , i ∈ ω as follows:

1. p0 = 1P , w0 = w∗
0 is any nested p-witness.

2. For i ∈ ω, pi+1 is the LA-least extension q of pi belonging to Di such that
LA

α(q) is Σn-elementary in LA and X ∩γ ∈ Aqγ for each γ ∈ Card ∩α(q)+ not

in supp (w∗
i ). wi+1 is the LA-least nested pi+1-witness extending wi and w∗

i+1

is obtained from wi+1 by choosing w∗
i+1(α) to be a CUB subset C of wi+1(α)

with the property that |pi+1
β | = |pi

β|, p
i+1
β

∗
= pi

β

∗
for β ∈ (ᾱ, ᾱ+

Dα
] and ᾱ ∈ C,

for each α in the domain of wi+1.

We claim that the sequence of pi’s has a lower bound q ∈ P . Define q as
follows: α(q) =

⋃
i α(pi), qβ =

⋃
i p

i
β above max{|E(q ↾ κ(E))β| | E ∈ T

overlaps β}, qβ agrees with E(q ↾ κ(E))β below |E(q ↾ κ(E))β | when E ∈ T
overlaps β, q∗β =

⋃
i pi

β

∗
for β ∈ Card ∩ α(q) and (qα(q), q

∗
α(q)) = (∅, ∅).

We must verify that qβ belongs to Sβ and q ↾ β belongs to Aqβ for β ∈
Card ∩α(q). Let H(β) denote the Σn+1 Skolem hull of β in LA

≤α(q) and H(β)

its transitive collapse. By the definition of the pi’s, |qβ| either is β+ of H(β)
or belongs to the support of w∗

i for sufficiently large i. In the former case,
as q ↾ β+ is definable over H(β), which by Condensation (b) is an initial
segment of Aqβ , it follows that qβ belongs to Sβ and q ↾ β belongs to Aqβ . In
the latter case, the nestedness of the wi’s implies that β belongs to a fixed
left-open interval I contained in the support of w∗

i for sufficiently large i;
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thus for some i0 ∈ ω, |pi
β̄
| is constant for i ≥ i0, not only for β̄ = β, but for

all sufficiently large β̄ < β (if β is a limit cardinal). Thus qβ belongs to Sβ

and q ↾ β belongs to Aqβ as these properties hold for pi0 .
The Preservation Requirement clearly holds for q, given the way q was

defined and the fact that it holds for each pi. The Restraint Requirement
holds for q: Suppose that γ is inaccessible in Aqγ , γ ≤ α(q) and for i ∈ ω
let Ci be the least CUB subset of γ in Api

γ such that pi
γ̄

∗
= ∅ for sufficiently

large γ̄ ∈ Ci. Then
⋂
{Ci | i < ω} witnesses the Restraint Requirement for

q at γ, either because the Ci’s stabilise or because qγ has length γ+ of H(γ)
and hence 〈Ci | i ∈ ω〉 belongs to Aqγ . By a similar argument, q ≤ p satisfies
(∗)3 from the definition of extension.

(b) By Lemma 7 we may assume that γ is p-stable. Let δ ∈ Card , γ = δ+.
For any r ≤ p let r ↓ γ denote the function with domain Card ∩ γ defined
by (r ↓ γ)(γ̄) = r(γ̄) for γ̄ ∈ Card ∩ δ, (r ↓ γ)(δ) = (rδ, ∅). Now let
〈(D∗

i , q̄i) | i < γ〉 be a list of all pairs (D∗, q̄) where D∗ = Dj for some j < γ
and q̄ = r ↓ γ for some r ≤ p.

Define a sequence of conditions pi with associated nested pi-witnesses wi

and w∗
i , i < γ as follows:

1. p0 = p, w0 = w∗
0 is any nested p-witness.

2. For i < γ, pi+1 is the LA-least extension q of pi such that q ↾ γ = p ↾ γ,
for some q∗ ∈ Di, q

∗ ↓ γ = q̄i, α(q∗) = α(q), q∗ ↾ Card ∩ [γ, α(q)] =
q ↾ Card ∩ [γ, α(q)], LA

α(q) is Σn-elementary in LA and X ∩ µ ∈ Aqµ for

each µ ∈ Card ∩ [γ, α(q)] not in supp (w∗
i ). (If no such q exists, then set

pi+1 = pi.) wi+1 is the LA-least nested pi+1-witness extending wi and w∗
i+1

is obtained from wi+1 by choosing w∗
i+1(α) to be a CUB subset C of wi+1(α)

with the property that |pi+1
β | = |pi

β|, p
i+1
β

∗
= pi

β

∗
for β ∈ (ᾱ, ᾱ+

Dα
] and ᾱ ∈ C,

for each α in the domain of wi+1.
3. For limit λ ≤ γ, pλ is the condition q defined by: α(q) =

⋃
i<λ α(pi),

q(β) = p(β) for β ∈ Card ∩ γ, qβ =
⋃

i<λ pi
β above max{|E(q ↾ κ(E))β | |

E ∈ T overlaps β} and qβ agrees with E(q ↾ κ(E))β below |E(q ↾ κ(E))β|
when E ∈ T overlaps β for β ∈ Card ∩ [γ, α(q)), q∗β =

⋃
i<λ pi

β

∗
for β ∈

Card ∩ [γ, α(q)) and (qα(q), q
∗
α(q)) = (∅, ∅).

In 3. above, we must verify that q is a condition. First we show that qβ
belongs to Sβ and q ↾ β belongs to Aqβ for β ∈ Card ∩ [γ, α(q)). Let H(β)
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denote the Σn+1 Skolem hull of β in LA
α(q) and H(β) its transitive collapse. By

the definition of the pi’s, |qβ| either is β+ of H(β) or belongs to the support
of w∗

i for sufficiently large i. In the former case, as q ↾ β+ is definable over
H(β), which by Condensation (b) is an initial segment of Aqβ , it follows that
qβ belongs to Sβ and q ↾ β belongs to Aqβ . In the latter case, the nestedness
of the wi’s implies that β belongs to a fixed left-open interval I contained in
the support of w∗

i for sufficiently large i; thus for some i0 ∈ ω, |pi
β̄
| is constant

for i ≥ i0, not only for β̄ = β, but for all sufficiently large β̄ < β (if β is
a limit cardinal). Thus qβ belongs to Sβ and q ↾ β belongs to Aqβ as these
properties hold for pi0 .

The Preservation Requirement clearly holds for q, given the way q was
defined and the fact that it holds for each pi. The Restraint Requirement
holds for q: Suppose that µ is inaccessible in Aqµ, µ ∈ Card ∩ (γ, α(q)) and
for i < λ let Ci be the least CUB subset of µ in Api

µ such that pi
µ̄

∗
= ∅

for sufficiently large µ̄ ∈ Ci. Then
⋂
{Ci | i < λ} witnesses the Restraint

Requirement for q at µ, either because the Ci’s stabilise or because qµ has
length µ+ of H(µ) and hence 〈Ci | i < λ〉 belongs to Aqµ. By a similar
argument, q ≤ p satisfies (∗)3 from the definition of extension.

Now note that qγ reduces each Di below γ because if r ≤ q then we may
choose s ≤ r in Di, and j < γ such that (Di, s ↓ γ) equals (D∗

j , q̄j), in which
case pj+1 is chosen so that for some s∗, α(s∗) = α(pj+1), pj+1 agrees with s∗

on Card ∩[γ, α(pj+1)]; but then using the p-stability of γ, r has the extension
s∗ ↾ γ ∪ r ↾ [γ, α(r)], which agrees with r on [γ, α(r)] and which belongs to
Di, as it extends s∗.

(c) Again by Lemma 7 we may assume that γ is p-stable. As a final segment
of Dγ is contained in CT , it follows that sufficiently large elements of Dγ are
p-stable as well. Suppose that δ belongs to Dγ and all elements of Dγ above
δ are p-stable. Then by the construction of case (b), we may extend p to q so
that q reduces each Di, i < (δ+

Dγ
)+ below (δ+

Dγ
)+ and q ↾ (δ+

Dγ
)+ = p ↾ (δ+

Dγ
)+.

Note that by the definition of extension, there is a CUB D ⊆ γ such that
|qβ| = |pβ|, q

∗
β = p∗β for β ∈ Card ∩ (γ̄, γ̄+

Dγ
], γ̄ ∈ D. By repeating this

successively for each such δ, we obtain a γ-sequence of conditions pi with
associated CUB subsets of γ whose limit q reduces Di below (γ̄+

Dγ
)+ for γ̄

in the diagonal intersection D of the associated CUB sets. Note that q ≤ p
obeys (∗)3 from the definition of extension since |qβ | = |pβ|, q

∗
β = p∗β for

β ∈ (γ̄, γ̄+
D], γ̄ ∈ D.
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(d) This is just like (c), except to each condition pi we associate a CUB subset
of γ consisting of cardinals which are pi-Woodin, and for γ̄ in the diagonal
intersection of these sets, reduce Di below γ̄+ for i < γ̄+.

This completes the proof of (a)-(d) when {p} is Σn-definable in LA and
the defining parameter for the sequence of Di’s is 0. Now argue as follows:
If the Lemma fails, then choose n so that it fails for some condition p and
some Σn-definable sequence of Di’s. Let (p, x) be least so that the Lemma
fails for p and some sequence of Di’s which is Σn-definable with parameter
x. Then the pair (p, x) is Σm-definable for some m > n. For this m, {p} is
Σm-definable and the the Lemma fails for a sequence of Di’s which is Σm-
definable with parameter 0. This contradicts what has been proven above.
2

Immediate consequences of this Lemma are that P preserves cofinalities as
well as the axioms of ZFC, and every CUB subset of an inaccessible cardinal
in a P -generic extension contains one in V (see Proposition 4.14 of [1]). If
G is P -generic over V then by Lemma 8, V [G] = V [Gω] where Gω can be
viewed as a subset of ωV

1 . Then by a simple ccc almost disjoint coding, Gω

can be further coded into V [R] for some real R. As Gω is not set-generic
over V , neither is R.

Finally we show that the extenders E in T are preserved, i.e., that the
canonical embedding E∗ : V → UltE can be extended to an elementary
embedding V [G] → UltE [G∗] for P -generic G. Thus we must define G∗

which is P ∗-generic over UltE, where P ∗ = E∗[P ], and which contains each
condition E∗(p), p ∈ G. By the Preservation Requirement, any two condi-
tions of the form E∗(p) ↾ [γ, α(E∗(p))] ∪ q ↾ γ are compatible for p, q ∈ G,
γ ∈ Card ∩ α(E)+, using the fact that when α is overlapped by E, α∗

E

contains E(p)∗α. Let H∗ denote the class of all such conditions. We claim
that G∗ = {q ∈ P ∗ | q is extended by some element of H∗} is the desired
P ∗-generic. Indeed suppose that D∗ ⊆ P ∗ is open dense, and is definable
over UltE via some formula ϕ with parameter x. Then x can be written
in the form E∗(f)(a) where f : LA

κ → LA, κ = crit E and a is an element
of LA

α(E). Now enumerate the elements of LA
κ in LA-increasing order as a

sequence 〈bi | i < κ〉 and let Di for i < κ be defined in LA by the for-
mula ϕ, using parameter f(bi). We may assume that Di is open dense on
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P for each i < κ. By Density Reduction for P there exists p ∈ G which
reduces Di below (κ̄+

Dκ
)+ for each i < (κ̄+

Dκ
)+, for CUB-many κ̄ < κ. Thus

E∗(p) ∈ H∗ reduces D∗
i below (κ+

E(Dκ))
+ for each i < (κ+

E(Dκ))
+, where if

E(〈bi | i < κ〉) = 〈ai | i < E(κ)〉, D∗
i is defined in UltE via ϕ using the pa-

rameter E∗(f)(ai). But a = ai for some i < α(E) and therefore E∗(p) reduces
the original D∗ below (κ+

E(Dκ))
+ = α(E) for such an i. Then the genericity

of G implies that {q ↾ α(E) | q ∈ G} generically codes t = E∗(p)α(E) over
At in the sense of UltE (using the fact that E belongs to A∅; see Lemma
4.8 of [1]). Therefore H∗ intersects D∗. We have shown that G∗ intersects
all UltE-definable open dense classes on P ∗, and is therefore P ∗-generic over
UltE , as desired. 2
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