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The Genericity Conjecture, as stated in Beller-Jensen-Welch [82], is the following:
(%) If O% ¢ L[R], R C w then R is generic over L.

We must be precise about what is meant by “generic”.

Definition. (Stated in Class Theory) A generic eztension of an inner model M is an

inner model M[G] such that for some forcing notion P C M :

(a) (M.P) is amenable and Ik, is (M, P)-definable for A sentences.
(b) G C P is compatible, closed upwards and intersects every (M, P)-definable dense
D CP.

A set x is generic over M if it is an element of a generic extension of M. And z is
strictly generic over M if M|[z] is a generic extension of M.
Though the above definition quantifies over classes, in the special case where M =

L and OF exists these notions are in fact first-order, as all L-amenable classes are A;

definable over L[O#]. From now on assume that O# exists.
Theorem A. The Genericity Conjecture is false.

The proof is based upon the fact that every real generic over L obeys a certain defin-

ability property, expressed as follows.

Fact. If R is generic over L then for some L-amenable class A, Sat(L, A) is not definable
over (L[R], A), where Sat(L, A) is the canonical satisfaction predicate for (L, A).

Thus Theorem A is established by producing a real R s.t. O% ¢ L[R] yet Sat(L, A) is
definable over (L[R], A) for each L-amenable A.

A weaker version of the Genericity Conjecture would state: If O% ¢ L[R] then either
R € L or R is generic over some inner model M not containing R. This version of the
conjecture is still open. However, this question can also be studied in contexts where

O# does not exist, for example when the universe has ordinal height equal to that of the
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minimal transitive model of ZF'. In the latter context, Mack Stanley [93] has demonstrated
the consistency of the existence of a non-constructible real which belongs to every inner

model over which it is generic.

Section A A Non-Generic Real below O7.
We first prove the Fact stated in the introduction.

Lemma 1. Suppose R C w 1s generic over L. Then for some L-amenable class A,

Sat(L, A) is not definable over (L[R|, A) with parameters.

Proof. Let R € L[G]| where G C P is generic for (L. P)-definable dense classes and P is
L-amenable as in (a), (b) of the definition of generic extension. Let A = P and suppose
that Sat(L,P) were definable over (L[R], P) with parameters. But the Truth Lemma holds
for G, P for formulas mentioning G, P : (L[G],G.P) E ¢(G,P) iff 3p € G(p IF ¢(G,P)).
using the fact that Ik in P for Ay sentences is definable over (L,P) and the generic-
ity of G. So Sat(L[G].G,P) is definable over (L|G], G,Sat(L,P)), since IF is definable
over (L,Sat(L,P)) for arbitrary first-order sentences. Since Sat(L.P) is definable over
(L[G], G, P) we get the definability of satisfaction for the latter structure over itself. This

contradicts a well-known result of Tarski. =

The rest of this section is devoted to the construction of a real R such that R preserves
L-cofinalities (cof(a) in L = cof(a) in L[R] for every a) and for every L-amenable A,
Sat(L, A) is definable over (L[R], A). (The proof has little to do with the Sat operator;
any operator from L-amenable classes to L-amenable classes that is “reasonable” is codable
by a real. We discuss this further at the end of this section.)

R will generically code a class f which is generic for a forcing of size oc™ = least
“L-cardinal” greater than oc. Since this sounds like nonsense we suggest that the reader
think of oc as some uncountable cardinal of V' and then oct denotes (oc)L. Thus we
will define a constructible set forcing P> C L+ for adding a generic f* C oc such that
if A C oc is constructible then Sat(L, A) is definable over (Lo [f*], />, A). Then we
show how to choose the f*’s to “fit together” into an f C ORD such that Sat(L, A) is
definable over (L[f], f, A) for each L-amenable A. Finally, we code f by a real R (using
the fact that I = Silver Indiscernibles are indiscernibles for (L[f]. f)).

A condition in P™ is defined as follows. Work in L. An FEaston set of ordinals is

a set of ordinals X such that X N k is bounded in & for every regular k > w. For any
a € ORD, 2° denotes all f: a — 2 and 2<® = U{2%|3 < a}. An Easton set of strings is
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a set D C U{2%|a € ORD} such that D N2<* has cardinality less than « for every regular
k > w. For any X C ORD let Seq(X) = U{2%|a € X}. A condition in P> is (X, F, D, f)

where:

(a) X C oc is an Easton set of ordinals
(b) F: X — P(2°°) = Power Set of 2°° such that for o € X, F(a) has cardinality
<a
(¢) D C Seq(X) is an Easton set of strings
(d) f: D — oc such that f(s) > length (s) for s € D.
We define extension of conditions as follows. (Y. G, E,g) < (X,F,D, f) iff
(i) YO X, EDD. G(a) D F(a) for a € X, g extends f
(ii) If s € E— D then the interval (length (s) 4+ 1. g(s)] contains no element of X, and
if s C S € F(a) for some a < length (s).,a € X then g(s) ¢ Cs.
We must define Cs. For S € 2° let u(S) = least p.r. closed ¢ > oc such that S € L,
and then Cs = {a < oc|la = ocN Skolem hull (a) in L,(s)}. Thus Cs is CUB in oc and
(Lo, S | @) < (Lo, S) for sufficiently large a € Cs (as S € Skolem hull (o) in L, g) for
sufficiently large a < oc). Also note that T' ¢ L,sy — Cr € LimCgUa for some a < oc.
Our goal with this forcing is to produce a generic function fg from 2<°° into oc such
that for each S C oc, {f(S | a)|la < oc} is a good approximation to the complement of
Cs. S € F(a) is a committment that for 8 > a, f(S [ ) ¢ Cs (in stronger conditions).

Lemma 2. Ifp € P> and a < oc, S € 2°°, s € 2<° then p has an extension (X, F, D, f)
such that o € X, S € F(a) and s € D.

Proof. Easy, given the fact that if s needs to be added then we can safely put f(s) =
length(s) + 1. -
Lemma 3. P> has the oct-chain condition (antichains have size < oc, all in L of

course).

Proof. Any two conditions (X, F, D, f),(X,G, D, f) are compatible, so an antichain has
cardinality at most the number of (X, D, f)’s, which is oc. =

Lemma4. Let G be P™-generic and write fo for U{f|(X, F.D. f) € G for some X, F, D}.
If S € 2% then f(S | a) ¢ Cs for sufficiently large o < oc.

Proof. G contains a condition (X, F, D, f) such that 0 € X and S € F(0). If s C S.s ¢ D
then fa(s) ¢ Cg, by (ii) in the definition of extension. And S [ a ¢ D for sufficiently large
a < oC. -



Lemma 5. Let G, fo be as in Lemma 4. If a < oc s reqular, S € 2°°, and a ¢ Lim Cg
then {fa(S|8)|8 < a} intersects every constructible unbounded subset of .

Proof. Let A C a be constructible and unbounded in a. We show that a condition
(X,F.D., f) can be extended to (X U{d}, F*.D U {S | §}, f*) for some §, where f*(S |
d) € A. Choose § < a large enough so that S | § is not an initial segment of any
T e U{F(B)|p € XNa}—{S}. Thisis possible since X Na is bounded in o and F(3) has
cardinality < a for each € X Na. Thenlet f* = fU{(S[6,5)} where 3€ A—Cgs—4
and F* = FU{(6,0)}. -

Lemma 6. P> preserves cofinalities (i.e., P> Ik cof(a) = cof(a) in L for every ordi-

nal a).

Proof. For regular k < oc and p € P> let (p)* = “part of p below k", (p)x = “part of p
at or above k7 be defined in the natural way: if p = (X, F, D, f) then

(p)f=(XnNk, FI XNk, DNSeqk, f | DNSeqkr) and
(p)k =(X =k, F X —k,DNSeq(oc — k), f [ DN Seq(oc — k)).

Given p and predense (A;|i < k) we find ¢ < p and (Zl|z < k) such that A; C A, for
all i < k, card A; < & for all i < x and each A; is predense below q. (A is predense if
{r|r < some d € A} is dense; it is predense below q if every extension of g can be extended
into the afore-mentioned set.) This implies that if cof(a) < k in some generic extension
L[G], G P°°-generic over L, then cof(a) < k in L. Since P> is oc™-CC, this means that
P preserves all cofinalities.

Given p and (A;|i < k) as above first extend p to pg = (Xo. Fy. Do, fo) so that
k € Xg. Now note that if r < pg then f7(s) < & for all s € D" — Dg of length < & (where
r=(X",F",D", ")), by condition (ii) in the definition of extension. Thus F = {(X" N
#, D"NSeq k, f7 | D"NSeqk)|r < po} is a set of cardinality x. Let ((A¥, (X!, D', f))|i < &)
be an enumeration in length x of all pairs from {A;|i < k} x F.

Now we extend pg successively to py > ps > ... in & steps so that (p;)* = (po)”
for all : < k. according to the following prescription: If p; has been defined, see if
it has an extension r; extending some d; € A such that (X" Nk, D" N Seqk, f™ |
D" N Seqk) = (X!, D', f*). If not then p;y; = p;. If so, select such an r;, d; and define
pit1 by requiring (pi+1)® = (po)". (Pi+1)x = (ri)x except enlarge FPi+1 (k) so as to contain
Fri(a) for @ € X™ N k. For limit A < & let py be the greatest lower bound to (p;|i < A).
Finally let ¢ = py.



Let A; C A; consist of all d; in the above construction that belong to A;, for j < k.
The claim we must establish is that each A; is predense below gq. Here’s the proof:
suppose ¢ < ¢ and let r < g,r extending some element of A;. Choose ¢ < k so that
(AX, (X1, D' f) = (A;,(X"Nk,D"NSeqr, fr | D" N Seqk)). Clearly at stage i + 1, it
was possible to find r;, d; as searched for in the construction. It suffices to argue that r;. ¢
are compatible. Now (r;), is extended by (pi+1)« and hence by (r)x. And (r;)" is extended
by (r)*, except possibly that F" («a) may fail to be a subset of F"(a) for @ € X" N k. And
note that the extension (r;), > (r). obeys all restraint imposed by F"(a) for a € X" Nk
since we included F"i(a) in FPi+1 (k). Thus r; and ¢ are both extended by r, provided we
only enlarge F"(a) for a € X" Nk to include Fi(a), -

For future reference we state:

Corollary 6.1. Suppose k < oc is reqular and A C P> s predense. Let P = {(p)xlp €
P>t Per = {p € P*|XP C k and Range (f?) C s} with the notion < of extension
defined as for P°. Then for any q € P there is ¢ < q such that A? = {r e P=*lruq
meets A, F"(a) C F? (k) for all o € X"} is predense on P>*,

Proof. As in the proof of Lemma 6, successively extend ¢ (after guaranteeing x € X7) in
K steps to ¢’ so that for any (X, D, f) if rUq"” meets A for some ¢"” < ¢’, some r such that
(X".D". f") = (X, D, f) then r U ¢ meets A for some such r, where F"(a) C Fq/(.%) for
all a € X". Now note that if rg € P°* then rq U ¢’ has an extension meeting A so there
is 1 such that (X™, D™, f) = (X", D™, f) and ry € A? . But then rg is compatible

with r1 so A7 is predense on P>*, as desired. =
Corollary 6.2. P>~ |- GCH.

Proof. Suppose f> : Seq(oc) — oc is P>-generic. It suffices to show that if K < oc is
regular, A C k, A € L[f*] then A € L[f* | Seq(x)]. But the proof of Lemma 6 shows
that given any p IF A C & there is ¢ < p such that for any i < &, {r < ql(r)e = (@)«
and r decides “1 € A”} is predense below ¢. This proves that there is ¢ < p such that
glF A e L[f'oC I Seq(x)] and so by the genericity of f>, A € L[f* | Seq(k)]. =

Next we embark on a series of lemmas aimed at showing that P>-generics actually

exist in L[O#] when oc is any Silver indiscernible.

Lemma 7. Suppose @ < j are adjacent countable Silver indiscernibles. Let m = w;; denote

the elementary embedding L — L which shifts each of the Silver indiscernibles > 1 to the
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next one and leaves all other Silver indiscernibles fized. Then there is a Pf-generic G{
such that of (X, F, D, f) belongs to G{ and S Ci, S € L then f(n(S) | a) & Crs) for all
n(S) [ a € D.

Proof. For any k € w let {1 < --- < {} be the first k Silver indiscernibles greater than j
and let jr = 57 N Yy Skolem hull of j +1U {¢y... 4} in L, ix =it Ny Skolem hull of
i+ 1U{l;... Ly} in L. (Of course it, j7 denote the cardinal successors to 7,5 in L.) Let
Jt = least p.r. closed ordinal a > j; such that L, F 7 is the largest cardinal. Finally let
Cr ={y <jly =73N%; Skolem hull (U {5} U{l;...¢)) in L}, a CUB subset of j.

Now note that if S C 4,5 € L — L;, then Cs) € Cy U~ for some v < i. For, (s
is greater than or equal to j; since otherwise m(S) belongs to L;, and hence S belongs to
L;,. Thus Cr(s)y € Cx U~ for some v < j since Cy is an element of sz. But the least such
~ is definable from elements of 71U (Silver Indiscernibles > j), so must be less than 1.

Also note that the L-cofinality of ji is equal to j : Consider M =transitive collapse of
Y1 Skolem hull of j +1U{¢y ... L;}. There is a partial £;(M) function from a subset of j
onto ji, all of whose restrictions to ordinals v < 7 have range bounded in j. (This is why
we are using X7 Skolem hulls rather than full ¥, Skolem hulls.) Thus the L-cofinalities of
jr and j are the same, namely j.

Thus we may conclude the following: The set {n(S)|S C .S € L;,} € Lj, (since it
is a constructible bounded subset of L;, ) and if S C:, S € L — L;; then Cr(g) is disjoint
from (7,7%), where v = least element of C greater than 1.

Now we see how to build Gf We describe an w-sequence pg > p; > ... of conditions
in 73{ and take G{ = {p € 731-j|pk < p for some k}. Let (Axlk € w) be a list of all
constructible dense sets on 73; so that for all &, Ay belongs to the ¥; Skolem hull in L
of tU{e,7,41...Lg+1}. This is possible since any constructible dense set on 73{ belongs to
L;++ and hence to the ¥y Skolem hullin L of 1U {7, j. ¢; ... {}} for some k. We inductively
define pg > p; > ... so that p; belongs to the ¥; Skolem hull in L of i* U {j. ¢y ...4;}.
Let pg be the weakest condition in 73{; po = (0.0,0.0). Suppose that & > 0 and pg_1 has
been defined. Write py_1 = (X, F, D, f). First obtain p; by adding i to X if necessary and
defining or enlarging F'() so as to include {wx(S)|S C .S € L;, }. Then choose p; < pi to
be L-least so that py meets Aj_y. This completes the construction.

We show that pr € ¥y Skolem hullin L of iTU{j,¢; ... ¢ }. By induction px_; belongs
to this hull and by choice of (Ag|k € w), so does Ag_1. Now {n(S)|S C,S € L;, } is the
range of f [ 1 where f is a ¥;(L) partial function with parameters j.¢; ...{;. The latter
is because Range(w [ i) is just j; N Xy Skolem hull in L of 1 U {j,¢; ... ¢x}. But given a
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parameter z for the domain of this X, (L) partial function, its range becomes X;-definable
in the sense that it is in the ¥y Skolem hull in L of {z.5.¢;...4;}. As z can be chosen
equivalently as an ordinal < it, we get that {m(S)|S C i,S € L;, } belongs to the ¥4
Skolem hull in L of 4T U {j.¢;...4;}. Thus so does pg. (Actually x can be chosen to
be if.)

Finally we must check that if pp = (X, Fy, Dy, fi) then fr(7(S) [ a) ¢ Crs) for
all 7(S) [ @ € Dg, all S C ¢ in L. Assume that this is true for smaller & and we check
it for k. Now if S € L;, then this is guaranteed by the fact that 7(S) € F(i), where
Pk = (Xk, Fr,Dk—1, fr—1). If S € L — L;, then Cr(s) is disjoint from (i,vg), where
vk = jNEy Skolem hull in L of 4, U{j}U{¢; ...} and 44 > i. But then v > 1T so Cr(s)
is disjoint from (i,4x) where 4x = sup(j N ¥ Skolem hull in L of it U {5} U {¢1...4}).
Since pg € 1 Skolem hull in L of iT U{j}U{f; ... ¢}, it follows that Range(fr) C 4% and
hence Range( fi) is disjoint from Cprg. =

Lemma 8. Suppose 1 < j are adjacent Silver indiscernibles, G{ 18 Pg-generic over L as

in Lemma 7 and G' is P'-generic over L. Then there exists G which is P?-generic over
L such that G{ = {(p)ilp € G’} and g € G' +— 7;;(q) € G'.

Proof. As before, let P7* C PJ consist of all p = (X?, F?, D?, f?) in P? such that X? C 4
and Range (f?) C i. For any p € P’ we modify p to p as follows. For S € F?(a), i € Cs
let S = m;;(S |i). For S € FP(a),i ¢ Cslet T C i be L-least so that (T,C7), (S,Cs)
agree through sup(CsNi) and let S = 7;;(T). Then F?(a) consists of all S for S € F?(a).
Otherwise p, p agree: (XP?,DP. fP) = (XP DP, fP).

If pe P! and i € XP we let Q(p) denote {q € P¥|Fi(a) C F?(i) for all a € X%.}
Now define G’ = {pePil(p)i e GIie X?, (p) € Q((p):) and (p) € 7:;[G']}. Note that
if pg,p1 belong to Ej then po,p1 are compatible because (pg);. (p1); are compatible, the

restraints from (pg)’, (p1)* are “covered” by FP°(i), FP1(i) and (po )i, (p1)' impose at least as
much restraint below ¢ as do (po)*, (p1)!. Note that if G = {p|p < p for some p € G’} then
G’ is compatible, closed upwards and G{ = {(p)ilp € G'}. Also ¢ € G' +— 7;;(q) € G/,
using the hypothesis that G{ satisfies Lemma 7. So it only remains to show that @j meets
all constructible predense A C P7.

The first Corollary to Lemma 6 states that it i1s enough to show that @f ={(p)ilp €
@j} meets all constructible predense A C 73{ and that for p € af{q € Q(p)lg = (r)!
for some r € @]} meets all constructible A C @Q(p) which are predense on U{Q(p*)|p* <

p} = P’'. The former assertion is clear by the P{—genericity over L of G{ = @f To prove
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the latter assertion we must show that for p € @f {q € Q(p)[g € 7;|G']} meets every
constructible A C Q(p) which is predense on P’*. Given such a A, let A C P! be defined
by A = {r € P'|m;;(r) = g for some q meeting A}. Note that A is constructible because it
equals {r € Pi|r = 71'1;1@) for some g meeting A} and A has L-cardinality <i. We claim
that A C P is predense on P'. Indeed, if r € P’ then =;j(r) € P’** and therefore can be
extended to some ¢ meeting A. As ¢ = m;;(t) for some ¢ < r we have shown that r can be
extended into A. By the P'-genericity of G', choose r € AN G'. Then 7;;(r) = g where g

meets A; clearly g € 7;;[G']. =

Lemma 9. Let 1y < 15 < ... denote the first w-many Silver indiscernibles and 1., their
supremum. Then there exist (G'|n > 1) such that G'* is P'" -generic over L and whenever

m: L —s L is elementary, n(i,) = i, we have p € G'» s 7w(p) € G,

Proof. Note that any 7 as in the statement of the lemma restricts to an increasing map
from {i,|n > 1} to itself, so G™(") makes sense. We define G'» by induction on n > 1.
Select Gt to be the L[O#]-least P'i-generic (over L). Select G;f as in Lemma 7 and use
Lemma 8 to define G'2 from G;?, G'"'. Now suppose that G'* has defined, n > 2. Then
define G;"** to be {p € P;"*"|mi,i, (q) < p for some ¢ € Gi*} where 7,4, (im) = imin—1
for m < w,m,;,(j) = j for j € I —1i,. Then G;:+1 is 77;:+1—generic, using the < i1-

closure of 73;12 and the fact that the collection of constructible dense subsets of P;:“ is the

countable union of sets of the form ;,; (A), A of L-cardinality i;. Moreover G;"*" obeys

nt1
the condition of Lemma 7 since G;f does and 7;,;, 1s elementary. Now define GZ"+1 from
G;:“, G'" using Lemma 8.

To verify p € G «— 7w(p) € G™"), note that this depends only on 7 | L;, for
some { < w and any such map is the finite composition of maps of the form m,,. where
Tm(in) = int1 for n > m, 7 (in) = 1, for 1 < n < m. So we need only verify that for
each m,n,p € G'» +— wy(p) € G™ () This is trivial unless m < n as m > n —
Tm(p) = p for p € G'» = G (in)  Finally we prove the statement by induction on
n > m. If n = m then it follows from the fact that G+ was defined from G:Z“, G
so as to obey the conclusion of Lemma 8. Suppose it holds for n > m and we wish to
demonstrate the property for n+1. But G'»+! is defined from G:Z“, G as G'n+2 is defined
from G:Zi,Gi"H. Clearly Wm[GZZ“] C GzZif and by induction 7, [G"] C G»+1. Thus
p € Gintt —s 1, (p) € G™in+1) . Conversely, p ¢ Gin+! —s p incompatible with some
q € G'"t1 — 71,,(p) incompatible with some 7,,(¢) € G™(in+1) s 7 (p) ¢ G™nin+1),
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Lemma 10. There exist (G'|i € I) such that G' is Pi-generic over L and whenever
w: L — L 1s elementary, p € Gl m(p) € G

Proof. Let t denote a Skolem term for L; thus L = {#(j1 ... 7n)|t a Skolem term, ¢t n-ary,
ji < -+ < jp in I}. Now define t(j;...jn) € G iff t(a(j1)...0(jn)) € G where o
is the unique order-preserving map from {7, j;...j,} onto an initial segment of I. (G"
for 1 < iy, is defined in Lemma 9.) We verify that this is well-defined: if t1(j1...7,) =
to(k1...Ekm) then let o* be the unique order-preserving map from {¢.71...Jn, k1... km}
onto an initial segment of I. Then t;(c*(j1)...0%(Jn)) = t2(c*(k1)...0*(km)). But
t1(c*(j1) ... 0% (jn)) € G () iff ti(o1(g1) ... 01(Jn)) € G71() where o4 is the unique order-
preserving map from {¢,ji...J,} onto an initial segment of I, using Lemma 9. The
analogous statement holds for ¢3, so our definition is well-defined. The property p €

G' «— 7w(p) € G™ is clear, using our definition. -

Now we are almost done. For any 7 € I let fi = U{fP|p € G'}. Thus fi: 2<1 — 4.
And let f = U{f'|i € I}, s0 f: 2<°° — oc (oc now denotes real oc, that is, oc = ORD).

Lemma 11. (a) For any L-amenable A C ORD, SAT(L, A) is definable over (L[f]. f, A).
(b) I is a class of indiscernibles for (L[f]. f).
(¢) L[f]F GCH.

Proof. (a) We treat A as an L-amenable function A: oc — 2. By Lemmas 4.5 we have
that for sufficiently large L-regular a,a € Lim C4 +— Range of f [ {A | 8|8 < oc}
intersects every constructible unbounded subset of o (where C 4 is defined for A to be the
limit of C4y4,¢ € I). But for a sufficiently large in C4, (Lo, A [ @) < (L, A) so Sat(L, A)
is definable over (L[f], f, A).

(b) Clear by Lemma 10.

(¢) By Corollary 6.2. =

Finally, using the technique of the proof of Theorem 0.2 of Beller-Jensen-Welch [82],
there is a real R such that f is definable over L[R] and I = I. Thus we conclude.
Theorem 12. There is a real R € L[O¥] such that:

(a) L.L[R] have the same cofinalities
b) 1% =1
(¢) If A is an L-amenable class then Sat(L,A) is definable over (L[R], A).

By Lemma 1 we conclude:



Theorem A. The Genericity Conjecture is false.

We close this section by mentioning a generalization of the above treatment of the
SAT operator to other operators on classes. For simplicity we first state our result in terms

of wy, rather than oc.

Theorem 13. Assume that O% exists. Suppose F is a constructible function from Py, (wy)
to atself, where Pr(w1) = all constructible subsets of (true) wy. Then there exists a real

R <1, OF such that F(A) is definable over (L, [R], A) for all A € Pr(wy).

Proof. Choose @ < wy so that F' is definable in L from parametersin a U (I —wq). Also we
may construct F’, defined from the same parameters, so that for any A € Pr(w1), F(A)
is definable over (L, . A, B) for any unbounded B C F'(A). Finally note that we may
assume that F'(A) C Cy4 for all A (where A is viewed as an element of 2“1) since Cy4 is
definable over (L, , A, B) for any unbounded B C Cjy4.

Forany: € I, a <i < wy, let F be defined in L just like F'. but with wy replaced by 1.
Also define P* as before but with C's replaced by F!(S) (viewing S € 2 as a subset of 7).
Then as before we can construct a generic f : 2<“' —s w so that for any A € Ppr(w1),
F(A) is definable over (L, [f], A). Finally code f generically by a real using the fact that
a is countable and I N (a,wy) is a set of indiscernibles for (L, [f]. f)- -

To deal with operators on L-amenable classes, we have to keep track of parameters.

Definition. Suppose i < j belong to I and F; is a counstructible function from Py (1)
to itself. Then Fij : Pr(j) — Pr(y) is defined as follows: Write F; = t(a,i,lg) where
t is a Skolem term for L, o < 1 and k are Silver indiscernibles greater than j. Then
F! =t(a.j. k).

Also define F© : L-amenable classes = Pr(oc) — Pr(oc) as follows: Given an
L-amenable A choose t and « so that for all j € I greater than o, ANj = t(a, 7, I;) where
k are Silver indiscernibles greater than j. Then Fe(A) = U{FZJ(A Nj)la <y €I} An

operator F': Pr(oc) — Pr(oc) is countably constructible if it is of the form FJ° where

F,, is a constructible function from Pr(w) to itself.

Theorem 14. Assume that O% exists and F : Pr(oc) — Pr(oc) is countably con-
structible. Then there exists R <j O% such that F(A) is definable over (L[R], A) for all
Ac PL(OC).

Proof. Apply Theorem 13 to F,, where F' = F3°. The resulting real R satisfies the

conclusion of the present Theorem. —
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Remarks. (a) The definitions of F(A) over (L, (R),A), (L[R], A) in Theorems 13, 14
respectively are independent of A.

(b) If F: Pr(w1) — Pr(w1) is constructible then there exists a set-generic extension
of L in which there is a real R obeying the conclusion of Theorem 13. However we cannot
expect there to be such a real in L[O#], or even compatible with the existence of O%. The
key feature of our forcing P is that not only can it be used to produce a real R obeying the
conclusion of Theorem 12 but such a real can be found in L[O#]. If one is willing to entirely
ignore compatibility with OF then there are forcings far simpler than ours which achieve
the effect of Theorem 14 for any F': classes — classes, over any model of Godel-Bernays

class theory.
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