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Abstract

We present a generalisation to ω2 of Baumgartner’s forcing for

adding a CUB subset of ω1 with finite conditions.

The following well-known result appears in Baumgartner, Harrington,
Kleinberg [2]. For the reader’s convenience we provide a proof here.

Theorem 1 Suppose that X ⊆ ω1. Then the following are equivalent:

a. X contains a CUB subset in an outer model which preserves ω1.
b. X is stationary.

Proof. (a) implies (b) because any two CUB sets must intersect. Conversely,
consider the forcing P whose conditions are closed, countable subsets of X,
ordered by end-extension. Clearly P adds a CUB subset to X; we must show
that ω1 is preserved.
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zur Förderung der wissenschaftlichen Forschung. The author also wishes to thank Bill

Mitchell, who independently obtained a similar result, for sharing his insights into this

problem.

1



First a general comment about ω1-preservation. We say that D is predense
below p iff every condition below p is compatible with an element of D. Then
ω1-preservation is a consequence of the following:

(∗) For any p and Di, i < ω with each Di predense below p, there are q ≤ p
and countable di, i < ω with di ⊆ Di and di predense below q for each i < ω.

For if (∗) holds and p forces σ to be a function from ω to ω1, then we can
consider Di = {q | for some α < ω1, q forces σ(i) = α}; by (∗), there is q ≤ p
and a countable β such that q forces σ(i) < β for each i < ω, and therefore
q forces that σ is bounded.

Now to see that P preserves ω1, suppose that 〈Di | i < ω〉 is a sequence
of sets which are predense below p and choose a continuous elementary chain
〈Mj | j < ω1〉 of countable elementary submodels of Hθ, θ large, so that
X, p, 〈Di | i < ω〉 belong to M0 and Mj ∈ Mj+1 for each j. As C = {Mj∩ω1 |
j < ω1} is CUB, we can choose j so that α = Mj ∩ ω1 ∈ X. Then as each
Di ∩ Mj is predense below p on P ∩ Mj, we can choose p = p0 ≥ p1 ≥ . . .
so that pi+1 belongs to Mj and extends an element ri of Di for each i < ω,
and in addition

⋃
i pi has supremum α. Then q =

⋃
i pi ∪ {α} is a condition

extending p, and for each i, {ri} ⊆ Di is predense below q, proving (∗). 2

Next we ask the following.

Question. Suppose that X is a stationary subset of ω1. Then is there a
cardinal-preserving forcing P which adds a CUB subset to X?

The difficulty with the forcing used to prove Theorem 1 is that it will
collapse 2ℵ0 to ω1, and therefore not preserve cardinals if CH fails. However,
Baumgartner found a way of adding CUB sets with “finite conditions” which
yields a positive answer to the above question (see [1]).

Theorem 2 Let X be a stationary subset of ω1. Then there is a forcing P
which adds a CUB subset to X which preserves cofinalities.

Proof. We use Uri Avraham’s variant of Baumgartner’s original technique
(see [1]). A condition is a finite set p of disjoint closed intervals in ω1 whose
left endpoints belong to X. (We allow the one-point intervals [α, α], α ∈ X.)
A condition q extends p iff q contains p.
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It is clear that for generic G, CG = the set of all left endpoints of intervals
in ∪G is an unbounded subset of X. Each countable ordinal either belongs
to some interval in G or fails to be a limit point of X; it follows that CG is
closed. As there are only ω1 conditions, it only remains to show that ω1 is
preserved.

Suppose that p is a condition and Di, i < ω are predense below p. Choose
a continuous elementary chain 〈Mj | j < ω1〉 of countable elementary sub-
models of Hθ, θ large, so that X, p, 〈Di | i < ω〉 belong to M0 and Mj ∈ Mj+1

for each j. As C = {Mj ∩ ω1 | j < ω1} is CUB, we can choose j so that
α = Mj ∩ ω1 ∈ X. Let q be the condition p ∪ {[α, α]}. If r extends q and
r0 = r ↾ α then every extension s0 of r0 in P ∩Mj is compatible with r. This
is because [α, α] belongs to q. It follows that di = Di ∩Mj is predense below
q for each i, as if r extends q then we can choose s0 ≤ r0 which extends a
condition in di, and therefore since s0 is compatible with r, r is compatible
with an element of di. Hence ω1 is preserved. 2

Now we look at the situation for ω2. Unfortunately there is no analogue
for Theorem 1.

Theorem 3 (See [3].) Suppose that 0# exists. Then

{X ⊆ ωL
2 | X ∈ L and X has a CUB subset in an inner model where

ω2 = ωL
2 }

is not constructible, and indeed has L-degree 0#. In particular, there are
X which belong to the above set but have no CUB subset in any set-generic
extension of L in which ω2 = ωL

2 .

However (under CH) there is a nice sufficient condition for a subset of
ω2 to contain a CUB in an extension preserving ω1 and ω2: X ⊆ ω2 is fat
stationary iff X ∩ cof ω1 is stationary and for all α in X ∩ cof ω1, X ∩ α
contains a CUB subset of α.

Theorem 4 Assume CH. If X ⊆ ω2 is fat stationary then there is a set-
forcing extension preserving both ω1 and ω2 in which X contains a CUB
subset.
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Proof. In analogy with the proof of Theorem 1, force with closed subsets
of X of ordertype less than ω2, ordered by end-extension. Countably closed
models of size ω1 and the fat stationarity of X are used as in the proof of
Theorem 1 to show that if p is a condition and Di, i < ω1, are predense below
p then there is q ≤ p extending an element of Di for each i. It follows that
no new ω1-sequences are added by the forcing and therefore both ω1 and ω2

are preserved. 2

The forcing of Theorem 4 will collapse cardinals if GCH fails at ω1. Avra-
ham discovered a way of avoiding this problem, but still assuming CH. Is
there a version for ω2 of Baumgartner’s forcing (as modified by Avraham)
to add a CUB subset of a fat stationary set using finite conditions, without
collapsing cardinals and without assuming CH? The following result provides
a positive answer under the assumption of the existence of a thin stationary
subset of Pω1

(ω2) (an assumption weaker than CH).

Definition. Pω1
(ω2) denotes the collection of countable subsets of ω2. A

subset S of Pω1
(ω2) is thin iff for each α < ω2, the set {x ∩ α | x ∈ S} has

cardinality at most ω1.

Theorem 5 Assume that there exists a thin stationary subset of Pω1
(ω2)

and that D ⊆ ω2 is fat stationary. Then there is a forcing P that preserves
cofinalities and adds a CUB subset of D.

Remark. Thin cofinal subsets of Pω1
(ω2) exist provably in ZFC. The existence

of a thin stationary subset of Pω1
(ω2) is strictly weaker than that of a special

Aronszajn tree on ω2. John Krueger has shown that thin stationary subsets
of Pω1

(ω2) do not exist if Martin’s Maximum (MM) holds.

Proof of Theorem 5. Let D1 denote D ∩ cof ω1. We can assume that D
consists exclusively of limit ordinals and that α+ω belongs to D whenever α
belongs to D. Let T be a thin stationary subset of Pω1

(ω2) and assume that
T is closed under initial segments. Choose B ⊆ ω2 such that T ⊆ L[B] and
ω2 equals (ω2 of L[B]). An ordinal α is good iff it is a limit ordinal between
ω1 and ω2 and for every β < α, cof β equals (cof β in Lα[B]). The set of
good ordinals forms a CUB subset of ω2.
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For an ordinal α and a set x with α < sup(x ∩ Ord), let αx denote the least
ordinal ≥ α in x. Note that if α < αx and x is Σ1 elementary in some Lβ[B],
β good, then αx must have uncountable cofinality.

A condition is a pair p = (A, S), where:

1. A is a finite set of disjoint closed intervals whose left endpoints belong to
D. (We allow the one-point intervals [α, α], α ∈ D.) Let LA denote the set
of left endpoints of intervals in A.

2. S is a finite set of countable Σ1 elementary submodels x of some Lβ [B], β
good, such that x∩Ord belongs to T and sup(x∩α) belongs to D whenever
α belongs to (x ∩ D1) ∪ {ω2}.

3. For each interval I = [α, β] in A and each x ∈ S:
3a. If I intersects x then I belongs to x.
3b. If I = [α, β] does not intersect x and α < sup(x ∩ Ord) then αx

belongs to LA.

4. Let FA be the set of all elements of LA of cofinality ω1, together with
ω2. For x ∈ S, the FA-height of x is the least element of FA greater than
sup(x ∩ Ord).

4a. If x belongs to S and α belongs to FA then x ∩ Lα[B] belongs to S.
4b. Suppose that x, y ∈ S have the same FA-height. Then x ∈ y, y ∈ x

or x = y.

Write p = (Ap, Sp) and let Lp, Fp denote the LA, FA of 1, 4 above. q
extends p iff Aq contains Ap and Sq contains Sp. For any condition q∗ and
α < ω2 we define q∗ ↾ α to be the pair q = (Aq, Sq) where:

Aq is Aq∗ ∩ Lα[B],
Sq is Sq∗ ∩ Lα[B].

Claim 1. Suppose that p belongs to P .
(a) If C is a CUB subset of ω2 then there exists α ∈ D1 ∩ C such that p
belongs to Lα[B] and every subset of α in T belongs to Lα[B]. For such α,
obtain p∗ from p by adding the interval [α, α] to Ap (and otherwise leaving p
unchanged). Then p∗ is a condition extending p.
(b) Let α and p∗ be as in part (a) and suppose that q∗ extends p∗. Then
q∗ ↾ α = q is a condition in Lα[B] extending p such that every extension of
q in Lα[B] is compatible with q∗.
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Proof of Claim 1:

(a) Such α exist since D1 is stationary and T ⊆ Lω2
[B] is thin. Property

1 is satisfied by p∗ as α is greater than the right endpoint of any interval in
Ap. Property 2 is the same for p∗ as for p. Property 3a is the same for p∗ as
for p, as α does not belong to any element of Sp. Property 3b is the same for
p∗ as for p, as α is greater than sup(x ∩ Ord) for any x ∈ Sp. And property
4 holds for p∗ as Fp∗ = Fp ∪ {α}, x ∩ Lα[B] = x for all x ∈ Sp and x, y ∈ Sp

have the same Fp∗-height iff they have the same Fp-height.
is the same for p∗ as for p, as α does not belong to any element of Sp.

(b) Suppose that q∗ extends p∗ and set q = q∗ ↾ α.

Subclaim 1. q is a condition in Lα[B] which extends p.

Clearly q, if a condition, extends p since q∗ does and p belongs to Lα[B]. To
verify that q is a condition, we need only verify properties 3b and 4.
3b. Assume that I ∩ x = ∅ and the left endpoint β of I = [β, γ] is less than
sup(x∩Ord), where I belongs to Aq∗ ∩ Lα[B] and x belongs to Sq∗ ∩ Lα[B].
Then since q∗ is a condition, βx is the left endpoint of some interval J in Sq∗ .
But since [α, α] belongs to Aq∗ , the right endpoint of J is less than α and
therefore J belongs to Aq∗ ∩ Lα[B] = Aq.
For property 4, first note that Fq = Fq∗ ∩ α, together with ω2.
4a. If x is in Sq and β ∈ Fq then x ∩ Lβ [B] is in Sq∗ and therefore also in
Sq = Sq∗ ∩ Lα[B], since, using our hypothesis on α, x ∩ Lβ [B] is an element
of Lα[B].
4b. If x, y ∈ Sq have the same Fq-height then since they both belong to
Lα[B], they have the same Fq∗-height. Thus the desired conclusion follows
as x, y ∈ Sq∗ and q∗ is a condition.

Now suppose that r is an extension of q, and r belongs to Lα[B]. We
must find a common extension of r and q∗. We define t by

At = Ar ∪ Aq∗ ,
St = Sr ∪ Sq∗ .

Subclaim 2. t is a condition extending both r and q∗.
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Clearly t, if a condition, extends both r and q∗. We now verify that t is a
condition, by verifying properties 1-4.
1. The intervals in At are disjoint, as r is a condition extending q, all intervals
in Ar have right endpoint less than α and all intervals in Aq∗ not in Aq have
left endpoint at least α.
2. Clear.
3. Suppose that I is an interval in At − Ar and x belongs to Sr. Then
sup(x ∩ Ord) is less than α and the left endpoint of I is at least α. So
property 3 is vacuous in this case. Suppose that I belongs to Ar and x belongs
to St−Sr. Then x∩Lα[B] belongs to Sq ⊆ Sr and therefore property 3 holds
for I and x∩Lα[B]. It follows that 3a holds for I and x, since if I intersects
x it must also intersect x ∩ Lα[B]. And 3b holds for I and x: If I is disjoint
from x and the left endpoint β of I is less than sup(x ∩ Ord) then I is also
disjoint from x∩Lα[B] and either (i) β is less than sup(x∩α), in which case
βx = βx∩α and therefore the result follows since r is a condition, (ii) βx = α,
in which case the result follows since [α, α] belongs to Aq∗ , or (iii) βx = αx,
in which case the result follows since q∗ is a condition. The remaining cases,
where I belongs to Ar and x belongs to Sr, or where I belongs to At − Ar

and x belongs to St − Sr, are immediate since r and q∗ are conditions.
4a. We must show that if x belongs to St and β ∈ Ft then x∩Lβ [B] belongs
to St. If x belongs to Sr then either β is in Fr, in which case x ∩ Lβ[B]
belongs to Sr ⊆ St since r is a condition, or β is at least α, in which case
x∩Lβ [B] = x ∈ Sr ⊆ St. If x belongs to Sq∗ then either β is in Fq∗ , in which
case the result follows since q∗ is a condition, or β is in Fr, in which case
x∩Lβ[B] = (x∩Lα[B])∩Lβ [B] ∈ Sr ⊆ St, since x∩Lα[B] ∈ Sq ⊆ Sr and r
is a condition.
4b. We must show that if x, y ∈ St have the same Ft-height, then x ∈ y, y ∈ x
or x = y. If x belongs to Sr then the Ft height of x is at most α and therefore
y also belongs to Sr; thus x, y have the same Fr-height and the result follows
since r is a condition. If x belongs to Sq∗ − Sr then the Ft-height of x is
greater than α, and therefore y also belongs to Sq∗ ; thus x, y have the same
Fq∗-height and the desired conclusion follows since q∗ is a condition.

This completes the proof of Claim 1.

Claim 2. Suppose that p belongs to P .
(a) For any CUB C ⊆ Pω1

(ω2) there exists a countable elementary submodel
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x of Lω2
[B] such that x∩Ord belongs to C ∩T , p belongs to x and whenever

α belongs to (x ∩ D1) ∪ {ω2}, sup(x ∩ α) belongs to D. For such x obtain
p∗ from p by adding x ∩ Lα[B] to Sp for all α ∈ Fp (and otherwise leaving p
unchanged). Then p∗ is a condition extending p.
(b) Let x and p∗ be as in part (a). Then if q∗ extends p∗ there is q in x
extending p such that every extension of q in x is compatible with q∗.

Proof of Claim 2:

(a) To see that such x exist, argue as follows. Choose β in D1 such
that C ∩ Pω1

(β) is CUB in Pω1
(β). Also choose y ∈ T such that y ∩ β

belongs to C ∩ Pω1
(β) and sup(y ∩ α) belongs to D whenever α belongs to

(y ∩ β ∩D1) ∪ {β}. As T is closed under initial segments, x = y ∩ β belongs
to T and has the desired properties.

Clearly p∗, if a condition, extends p. To verify that p∗ is a condition we
need only check properties 3 and 4.
3a. As p belongs to x, each interval in Ap belongs to x and therefore the
conclusion of 3a holds for x. It follows easily that 3a also holds for x∩Lα[B]
whenever α belongs to Fp. 3a holds for other elements of Sp∗ since p is a
condition.
3b. This is vacuous for x ∩ Lα[B], α ∈ Fp, and holds for other elements of
Sp∗ since p is a condition.
4a. This is true for x ∩ Lα[B], α ∈ Fp, by definition of p∗, and for other
elements of Sp∗ since p is a condition.
4b. Suppose that y, z ∈ Sp∗ have the same Fp∗-height (= Fp-height). If both
y, z belong to Sp then the desired conclusion follows since p is a condition.
Assume that y = x ∩ Lα[B] where α belongs to Fp. If z belongs to Sp then
z belongs to x and since it has the same Fp-height as y, must also belong to
Lα[B]; hence z belongs to y. If z is of the form x ∩ Lβ[B], β ∈ Fp, and has
the same Fp-height as y then z = y, since the Fp-height of x ∩ Lβ[B] equals
β for any β ∈ Fp.

(b) Let q∗ extend p∗ and define q as follows:

Aq is Aq∗ ∩ x,
Sq is Sq∗ ∩ x

Subclaim 1. q is a condition in x extending p.
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Clearly q, if a condition, extends p since q∗ extends p∗ ≤ p and p belongs
to x. To check that q is a condition we need only verify properties 3b and 4.
3b. Suppose that I belongs to Aq, I is disjoint from y and the left endpoint
α of I is less than sup(y ∩ Ord), where y belongs to Sq. Then αy is the left
endpoint of some J ∈ Aq∗ since q∗ is a condition. Since J intersects y, J must
belong to y and therefore also to x, since y belongs to x. Thus J belongs to
Aq.
4a. If y belongs to Sq and α belongs to Fq ∩ω2 then y∩Lα[B] belongs to Sq∗

since q∗ is a condition. Since both y and α belong to x, we get y∩Lα[B] ∈ Sq.
If y belongs to Sq then y ∩ Lω2

[B] = y and therefore belongs to Sq.
4b. Suppose that y ∈ Sq has Fq-height α and Fq∗-height β. Suppose that β
is less than sup(x ∩ Ord). Then either β equals α or is the left endpoint of
some interval in Aq∗ disjoint from x. In the latter case, βx is the left endpoint
of some interval in Aq∗ ∩x = Aq and therefore βx belongs to Fq, since it must
have uncountable cofinality. Thus βx = α. So we conclude that the Fq∗-
height of y is the least β ∈ Fq∗ such that either β is less than sup(x ∩ Ord)
and βx = α, or β is greater than sup(x ∩ Ord). Therefore the Fq∗-height of
y ∈ Sq is uniquely determined by the Fq-height of y. If y, z ∈ Sq have the
same Fq-height then they therefore also have the same Fq∗-height, and since
q∗ is a condition, either y ∈ z, z ∈ y or y = z, as desired.

Now suppose that r in x extends q. We must find a common extension t
of r and q∗. We define t by:

At = Ar ∪ Aq∗

St = Sr ∪ {y ∩ Lα[B] | y ∈ Sq∗ , α ∈ Fr}.

Subclaim 2. t is a condition extending both r and q∗.

Clearly t, if a condition, extends both r and q∗. We show now that t is a
condition.
1. Suppose that I is an interval in Aq∗ but not in Ar. Then I is disjoint
from x. If the left endpoint α of I is at least sup(x∩Ord), then I is disjoint
from all intervals in Ar, since the latter belong to x. Otherwise αx is the
left endpoint of some interval J in Aq. It follows that the intervals in Ar are
disjoint from I, as they belong to x and are either equal to or disjoint from
J . Thus At consists of pairwise disjoint intervals.
2. We must show that if y belongs to St and α ∈ (y∩D1)∪{ω2} then sup(y∩α)
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belongs to D. This is clear if y belongs to Sr since r is a condition. It also
holds if y belongs to Sq∗ since q∗ is a condition. This implies the result for
arbitrary y ∈ St when α is not ω2. It remains to show: If y ∈ Sq∗ , α ∈ Fr then
sup(y∩α) belongs to D. Let β be least in Fq∗ −α. If β is not the Fq∗-height
of y∩Lβ [B] then y∩α = y∩β and therefore sup(y∩α) belongs to D since q∗

is a condition. Otherwise, y∩Lβ [B] and x∩Lβ [B] have the same Fq∗-height,
since α belongs to x. Since q∗ is a condition, either y ∩ Lβ[B] ∈ x ∩ Lβ[B],
x ∩ Lβ[B] ∈ y ∩ Lβ [B] or y ∩ Lβ [B] = x ∩ Lβ[B]. In the first case, y ∩ Lβ[B]
belongs to Sr so y ∩ α = (y ∩ β) ∩ α belongs to D since r is a condition.
In the latter two cases, α belongs to y ∩D1, and therefore the result follows
since q∗ is a condition.
3a. Suppose that I is an interval in At, y belongs to St and I intersects y. We
must show that I belongs to y. First we consider the case where I belongs
to Ar and y belongs to St − Sr. Write I = [α, β] and y = z ∩ Lγ [B], where
z belongs to Sq∗ − Sr and γ belongs to Fr. Let β∗ be the least element of
Fq∗ greater than α. Since we have shown that At consists of pairwise disjoint
intervals, it follows that β∗ is greater than β. Therefore the Fq∗-heights of
x ∩ Lβ∗ [B] and z ∩ Lβ∗ [B] are both β∗, the former since β belongs to x and
the latter since z intersects I = [α, β]. Thus either z ∩ Lβ∗ [B] ∈ x ∩ Lβ∗ [B],
x ∩ Lβ∗ [B] ∈ z ∩ Lβ∗ [B] or x ∩ Lβ∗ [B] = z ∩ Lβ∗ [B]. The first possibility
implies that I intersects y∩Lβ∗ [B] = (z∩Lβ∗ [B])∩Lγ [B] ∈ Sr, and therefore
since r is a condition, I belongs to y∩Lβ∗ [B] ⊆ y, as desired. The second and
third possibilities imply that y contains x∩Lβ∗ [B] as a subset and therefore
I as an element. Now consider the case where I belongs to At − Ar and
y belongs to Sr. Then I belongs to Aq∗ and intersects x, which belongs to
Sq∗ . Thus I belongs to x, contradicting the fact that I does not belong to
Aq ⊆ Ar. The case where I belongs to Ar and y belongs to Sr follows since r
is a condition. Finally, if I belongs to At−Ar and y belongs to St−Sr, write
y = z ∩ Lα[B] where z ∈ Sq∗ and α ∈ Fr. Since q∗ is a condition, I belongs
to z. If I does not belong to y, then I intersects x and therefore belongs to
x, again since q∗ is a condition. But this contradicts the hypothesis that I
does not belong to Ar.
3b. Suppose that I = [α, β] belongs to At, y belongs to St, I is disjoint from
y and α is less than sup(y∩Ord). We must show that αy is the left endpoint
of some interval in At. First we consider the case where I belongs to Ar and
y belongs to St − Sr. Write y = z ∩ Lγ [B] where z belongs to Sq∗ and γ
belongs to Fr. Let β∗ be the least element of Fq∗ greater than β. If αy = β∗
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then αy is the left endpoint of some interval in Aq∗ and we are done. If
αy > β∗, then let J be the interval of Aq∗ with left endpoint β∗. Since q∗ is a
condition and αy = αz, J is not an element of z and therefore is disjoint from
z. Since q∗ is a condition, αy = (β∗)z is the left endpoint of some interval
of Aq∗ , as desired. Finally, if β < αy < β∗, it follows that x ∩ Lβ∗ [B] and
z ∩ Lβ∗ [B] both have Fq∗-height β∗, and therefore x ∩ Lβ∗ [B] ∈ z ∩ Lβ∗ [B],
z ∩ Lβ∗ [B] ∈ x ∩ Lβ∗ [B] or x ∩ Lβ∗ [B] = z ∩ Lβ∗ [B]. The first and third
of these possibilities contradict our hypothesis that I ∈ x is disjoint from y.
In the second possibility, z ∩ Lβ∗ [B] belongs to Sq and since αy = αz is less
than β∗, we have that αy is the left endpoint of some interval in Ar since r
is a condition. Next we consider the case where I belongs to At − Ar and
y belongs to Sr. Thus I belongs to Aq∗ and must be disjoint from x, else
it would belong to x and therefore to Ar. As α is less than sup(x ∩ Ord),
it follows that αx is the left endpoint of some interval in Aq∗ , which in fact
belongs to Ar. If αy = αx then we are done. Otherwise αy equals (αx)y,
which must be the left endpoint of an interval in Ar, since r is a condition.
The remaining two cases, where either I belongs to Ar and y belongs to Sr,
or where I belongs to At − Ar and y belongs to St − Sr, follow since both r
and q∗ are conditions.
4a. We must show that if y belongs to St and α belongs to Ft then y∩Lα[B]
belongs to St. This is clear if y belongs to Sr and α belongs to Fr, or if y
belongs to Fq∗ and α belongs to Fq∗ , since r and q∗ are conditions. This is also
true if y belongs to Sq∗ and α belongs to Fr, by definition of St. And we may
assume that y belongs to Sr ∪ Sq∗ . So we need only check the case where y
belongs to Sr, α belongs to Fq∗ and α is less than sup(y∩Ord). If α belongs to
x then it also belongs to Fr so we are done since r is a condition. Otherwise αx

is defined and belongs to Fr. So since r is a condition, y∩Lα[B] = y∩Lαx
[B]

belongs to Sr.
4b. We must show that if y, z ∈ St have the same Ft-height then either y ∈ z,
z ∈ y or y = z. Note that y, z also have the same Fr-height and the same
Fq∗-height. If y, z both belong to Sr then the desired conclusion follows since
r is a condition. Suppose that y, z are of the form y∗ ∩ Lα[B], z∗ ∩ Lβ[B],
respectively, where y∗, z∗ belong to Sq∗ and α, β ∈ Fr. We may assume that
α, β are the Fr-heights of y, z, respectively, and therefore α = β. Let α∗ be
the common Fq∗-height of y, z. Then y∗∩Lα∗ [B], z∗∩Lα∗ [B] have Fq∗-height
α∗ and therefore since q∗ is a condition, we have y∗ ∩ Lα∗ [B] ∈ z∗ ∩ Lα∗ [B],
y∗∩Lα∗ [B] = z∗∩Lα∗ [B] or z∗∩Lα∗ [B] ∈ y∗∩Lα∗ [B]. The second possibility
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yields y = z. The first possibiilty implies that y belongs to z∗ ∩Lα∗ [B] since
it is an initial segment of y∗∩Lα∗ [B]; as y ∈ Lα[B] we get y ∈ z∗∩Lα[B] = z.
The third possiblity is handled identically to the first, with y and z switched.
Finally assume that y belongs to Sr and z = z∗ ∩ Lα[B] where z∗ ∈ Sq∗

and α ∈ Fr. We may assume that α is the Fr-height of z, which is also the
Fr-height of y. Let α∗ be the common Fq∗-height of y and z. Then α∗ is
also the Fq∗-height of x ∩ Lα∗ [B], since x contains y, and is the Fq∗-height
of z∗ ∩ Lα∗ [B]. Since q∗ is a condition, we have z∗ ∩ Lα∗ [B] ∈ x ∩ Lα∗ [B],
x ∩ Lα∗ [B] ∈ z∗ ∩ Lα∗ [B] or z∗ ∩ Lα∗ [B] = x ∩ Lα∗ [B]. Under the first
possibility, (z∗ ∩Lα∗ [B])∩Lα[B] = z belongs to Sr, so we are done since r is
a condition. The second and third possibilities imply that y ∈ z∗∩Lα[B] = z.

This completes the proof of Claim 2.

Claim 1 implies that ω2 is preserved. Claim 2 implies that ω1 is preserved.
As P has cardinality ω2, all cofinalities are preserved.

Claim 3. Let G be P -generic and CG = {γ | γ is a left endpoint of some
interval in ∪{Ap | p ∈ G}}. Then CG is a CUB subset of D.

Proof of Claim 3:

It follows from Claim 1 (a) that CG is unbounded. We show that CG is
closed.

Suppose that p is a condition and for the sake of contradiction, p 

(α ∈ Lim CG and α /∈ CG). We may assume that for each y ∈ Sp, if αy is
defined and forced by some extension of p to belong to CG, then αy is the
left endpoint of some interval in Ap; otherwise we can enlarge Ap without
changing Sp to guarantee this property. Note that for q ≤ p, α does not
belong to any interval in Aq, else q forces either that α belongs to CG or is
not the limit of elements of CG.

Suppose that y belongs to Sp, α is not in Lim (y∩Ord) but α is less than
sup(y∩Ord). Then observe that αy must be a left endpoint of some interval
in Ap, else by requirement 3b on conditions, no extension of p can introduce
a new interval with left endpoint between sup(y ∩ α) and α, and hence p
cannot force that α is a limit point of CG. Let β be the least element of Fp
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greater than α and consider S = {y ∈ Sp | α ≤ sup(y ∩ Ord) < β}. Then by
requirement 4b on conditions, the elements of S form an ∈-chain.

Assume first that y ∩ α is cofinal in α for some y ∈ S, and let y0 be the
∈-least such. Note that if αy0

is defined and is the left endpoint of some
interval in Ap then α must belong to D, by requirement 2 on conditions. We
show that we can extend p to force either that α belongs to CG or that α
is not a limit point of CG, achieving the desired contradiction. Note that
D ∩ y0 ∩α must be cofinal in α, as there are cofinally many γ < α which are
forced by extensions of p into CG and for any such γ /∈ y0, γy0

belongs to D
by requirement 3b on conditions. Since γ +ω belongs to D whenever γ does,
it follows that D ∩ y0 ∩ α ∩ cof ω is also cofinal in α.

If αy0
is defined and not the left endpoint of some interval in Ap, then let

γ be an element of D ∩ y0 ∩α∩ cof ω greater than the right endpoint of any
interval of Ap with left endpoint less than α, and larger than sup(y∩α) for all
y ∈ Sp with sup(y ∩ α) < α. We claim a condition results when the interval
I = [γ, αy0

] is added to p: I is disjoint from intervals of Ap with left endpoint
less than α by choice of γ. And it is disjoint from intervals of Ap with left
endpoint greater than α since by assumption, αy0

is not the left endpoint of
an interval of Ap, and therefore by 3a, 3b neither is any ordinal between α
and αy0

. I does not intersect any y ∈ Sp with sup(y ∩ β) < α by choice of
γ. I does not intersect any y ∈ Sp with sup(y ∩ α) < α < sup(y ∩ β): For
such y we have y ∩ β ∈ y0 and therefore y ∩ β ⊆ y0; also αy > αy0

since,
as observed earlier, αy must be a left endpoint of some interval of Ap and
by assumption αy0

is not. Any other y ∈ Sp contains y0 as an element and
therefore as a subset, and therefore also the interval I as an element. For
those y ∈ Sp disjoint from I with γ < sup(y ∩Ord), we have γy = αy, and as
observed earlier, αy is the left endpoint of an interval of Ap. This completes
the verification that adding I to p results in a condition.

If αy0
is defined and the left endpoint of some interval in Ap, then let

I = [α, α]. We claim that a condition results when we add I to p: Of course
I is disjoint from all intervals of Ap since α does not belong to any such
interval. Trivially, if I intersects y ∈ Sp then it belongs to y. If I is disjoint
from y ∈ Sp and α < sup(y∩Ord), then αy ≥ αy0

, as otherwise y∩Lβ[B] ∈ S,
y0 ∈ y ∩ Lβ[B] and therefore α = sup(y0 ∩ αy0

) ∈ y, against our hypothesis.
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So αy must be a left endpoint of some interval of Ap, else by requirements
3a,3b on conditions, αy0

could not be. This completes the verification that
adding I to p results in a condition.

If αy0
is undefined then again set I = [α, α]. We claim that a condition

results when we add I to p: By the argument of the previous paragraph, it
suffices to show that if I is disjoint from y ∈ Sp and α < sup(y ∩ Ord) then
αy is the left endpoint of some interval of Ap. If αy is at least β, then this
must be the case, as otherwise β could not be the left endpoint of such an
interval. If αy is less than β then y∩Lβ [B] belongs to S and therefore either
y0 is an element of y, contradicting α /∈ y, or αy ≥ αy0

. If αy equals αy0

then αy is the left endpoint of some interval of Ap by hypothesis, and if αy is
greater than αy0

then it must be the left endpoint of an interval of Ap, else
αy0

could not be the left endpoint of such an interval. This completes the
verification that adding I to p results in a condition.

Lastly, we treat the case where y ∩ α is not cofinal in α for all y ∈ S.
In this case we choose I = [γ, α], where γ is an element of D ∩ α ∩ cof ω
greater than the right endpoint of any interval of Ap with left endpoint less
than α, and larger than sup(y ∩ α) for all y ∈ Sp with sup(y ∩ α) < α. We
claim that a condition results when we add I to p: I is disjoint from all
intervals in Ap by choice of γ. I is disjoint from each y ∈ Sp, as y ∩ α is
contained in γ by choice of γ and the case hypothesis, and if α belongs to y,
we have α < sup(y ∩ Ord), which, as observed earlier, implies that αy = α
the left endpoint of an interval of Ap, an impossibility. If y belongs to Sp and
γ < sup(y ∩ Ord) then αy must be the left endpoint of an interval of Ap, as
observed earlier. This completes the verification that adding I to p results
in a condition.

This completes the proof of Theorem 5.

A remark and some questions. The hypothesis that D is fat stationary is not
necessary for Theorem 5. The proof only uses that there is a thin stationary
subset S of Pω1

(ω2) such that for x ∈ S, sup(x ∩ α) belongs to D whenever
α belongs to x ∩ D ∩ Lim D or α = ω2. However this hypothesis is not
substantially weaker than the one stated in Theorem 5 as, at least under CH,
there is a countably distributive, cofinality-preserving forcing that adds a fat
stationary subset to such a set D. Can the assumption of a thin stationary
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subset of Pω1
(ω2) be entirely eliminated from the statement of Theorem 5?

Is Theorem 5 still true if CH is added to both its hypothesis and conclusion?
And is there a version of Theorem 5 for ω3?
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