Forcing with finite conditions

Sy D. Friedman^{*} Kurt Gödel Research Center for Mathematical Logic University of Vienna

October 6, 2005

Abstract

We present a generalisation to ω_2 of Baumgartner's forcing for adding a CUB subset of ω_1 with finite conditions.

The following well-known result appears in Baumgartner, Harrington, Kleinberg [2]. For the reader's convenience we provide a proof here.

Theorem 1 Suppose that $X \subseteq \omega_1$. Then the following are equivalent:

a. X contains a CUB subset in an outer model which preserves ω₁.
b. X is stationary.

Proof. (a) implies (b) because any two CUB sets must intersect. Conversely, consider the forcing P whose conditions are closed, countable subsets of X, ordered by end-extension. Clearly P adds a CUB subset to X; we must show that ω_1 is preserved.

^{*}This article was prepared during research visits to the Centre de Recerca Matematica, Bellaterra during the months of September 2003 and February-March 2005. Research support was provided by Forschungsprojekt Nr. P16334-NO5 des österreichischen Fonds zur Förderung der wissenschaftlichen Forschung. The author also wishes to thank Bill Mitchell, who independently obtained a similar result, for sharing his insights into this problem.

First a general comment about ω_1 -preservation. We say that D is predense below p iff every condition below p is compatible with an element of D. Then ω_1 -preservation is a consequence of the following:

(*) For any p and D_i , $i < \omega$ with each D_i predense below p, there are $q \leq p$ and *countable* d_i , $i < \omega$ with $d_i \subseteq D_i$ and d_i predense below q for each $i < \omega$.

For if (*) holds and p forces σ to be a function from ω to ω_1 , then we can consider $D_i = \{q \mid \text{for some } \alpha < \omega_1, q \text{ forces } \sigma(i) = \alpha\}$; by (*), there is $q \leq p$ and a countable β such that q forces $\sigma(i) < \beta$ for each $i < \omega$, and therefore q forces that σ is bounded.

Now to see that P preserves ω_1 , suppose that $\langle D_i \mid i < \omega \rangle$ is a sequence of sets which are predense below p and choose a continuous elementary chain $\langle M_j \mid j < \omega_1 \rangle$ of countable elementary submodels of H_{θ} , θ large, so that $X, p, \langle D_i \mid i < \omega \rangle$ belong to M_0 and $M_j \in M_{j+1}$ for each j. As $C = \{M_j \cap \omega_1 \mid j < \omega_1\}$ is CUB, we can choose j so that $\alpha = M_j \cap \omega_1 \in X$. Then as each $D_i \cap M_j$ is predense below p on $P \cap M_j$, we can choose $p = p_0 \ge p_1 \ge \ldots$ so that p_{i+1} belongs to M_j and extends an element r_i of D_i for each $i < \omega$, and in addition $\bigcup_i p_i$ has supremum α . Then $q = \bigcup_i p_i \cup \{\alpha\}$ is a condition extending p, and for each i, $\{r_i\} \subseteq D_i$ is predense below q, proving (*). \Box

Next we ask the following.

Question. Suppose that X is a stationary subset of ω_1 . Then is there a cardinal-preserving forcing P which adds a CUB subset to X?

The difficulty with the forcing used to prove Theorem 1 is that it will collapse 2^{\aleph_0} to ω_1 , and therefore not preserve cardinals if CH fails. However, Baumgartner found a way of adding CUB sets with "finite conditions" which yields a positive answer to the above question (see [1]).

Theorem 2 Let X be a stationary subset of ω_1 . Then there is a forcing P which adds a CUB subset to X which preserves cofinalities.

Proof. We use Uri Avraham's variant of Baumgartner's original technique (see [1]). A condition is a finite set p of disjoint closed intervals in ω_1 whose left endpoints belong to X. (We allow the one-point intervals $[\alpha, \alpha], \alpha \in X$.) A condition q extends p iff q contains p.

It is clear that for generic G, C_G = the set of all left endpoints of intervals in $\cup G$ is an unbounded subset of X. Each countable ordinal either belongs to some interval in G or fails to be a limit point of X; it follows that C_G is closed. As there are only ω_1 conditions, it only remains to show that ω_1 is preserved.

Suppose that p is a condition and D_i , $i < \omega$ are predense below p. Choose a continuous elementary chain $\langle M_j \mid j < \omega_1 \rangle$ of countable elementary submodels of H_{θ} , θ large, so that $X, p, \langle D_i \mid i < \omega \rangle$ belong to M_0 and $M_j \in M_{j+1}$ for each j. As $C = \{M_j \cap \omega_1 \mid j < \omega_1\}$ is CUB, we can choose j so that $\alpha = M_j \cap \omega_1 \in X$. Let q be the condition $p \cup \{[\alpha, \alpha]\}$. If r extends q and $r_0 = r \upharpoonright \alpha$ then every extension s_0 of r_0 in $P \cap M_j$ is compatible with r. This is because $[\alpha, \alpha]$ belongs to q. It follows that $d_i = D_i \cap M_j$ is predense below q for each i, as if r extends q then we can choose $s_0 \leq r_0$ which extends a condition in d_i , and therefore since s_0 is compatible with r, r is compatible with an element of d_i . Hence ω_1 is preserved. \Box

Now we look at the situation for ω_2 . Unfortunately there is no analogue for Theorem 1.

Theorem 3 (See [3].) Suppose that $0^{\#}$ exists. Then

 $\{X\subseteq \omega_2^L\mid X\in L \text{ and }X \text{ has a CUB subset in an inner model where }\omega_2=\omega_2^L\}$

is not constructible, and indeed has L-degree $0^{\#}$. In particular, there are X which belong to the above set but have no CUB subset in any set-generic extension of L in which $\omega_2 = \omega_2^L$.

However (under CH) there is a nice sufficient condition for a subset of ω_2 to contain a CUB in an extension preserving ω_1 and ω_2 : $X \subseteq \omega_2$ is fat stationary iff $X \cap \operatorname{cof} \omega_1$ is stationary and for all α in $X \cap \operatorname{cof} \omega_1$, $X \cap \alpha$ contains a CUB subset of α .

Theorem 4 Assume CH. If $X \subseteq \omega_2$ is fat stationary then there is a setforcing extension preserving both ω_1 and ω_2 in which X contains a CUB subset. Proof. In analogy with the proof of Theorem 1, force with closed subsets of X of ordertype less than ω_2 , ordered by end-extension. Countably closed models of size ω_1 and the fat stationarity of X are used as in the proof of Theorem 1 to show that if p is a condition and D_i , $i < \omega_1$, are predense below p then there is $q \leq p$ extending an element of D_i for each i. It follows that no new ω_1 -sequences are added by the forcing and therefore both ω_1 and ω_2 are preserved. \Box

The forcing of Theorem 4 will collapse cardinals if GCH fails at ω_1 . Avraham discovered a way of avoiding this problem, but still assuming CH. Is there a version for ω_2 of Baumgartner's forcing (as modified by Avraham) to add a CUB subset of a fat stationary set using finite conditions, without collapsing cardinals and without assuming CH? The following result provides a positive answer under the assumption of the existence of a thin stationary subset of $P_{\omega_1}(\omega_2)$ (an assumption weaker than CH).

Definition. $P_{\omega_1}(\omega_2)$ denotes the collection of countable subsets of ω_2 . A subset S of $P_{\omega_1}(\omega_2)$ is thin iff for each $\alpha < \omega_2$, the set $\{x \cap \alpha \mid x \in S\}$ has cardinality at most ω_1 .

Theorem 5 Assume that there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$ and that $D \subseteq \omega_2$ is fat stationary. Then there is a forcing P that preserves cofinalities and adds a CUB subset of D.

Remark. Thin *cofinal* subsets of $P_{\omega_1}(\omega_2)$ exist provably in ZFC. The existence of a thin stationary subset of $P_{\omega_1}(\omega_2)$ is strictly weaker than that of a special Aronszajn tree on ω_2 . John Krueger has shown that thin stationary subsets of $P_{\omega_1}(\omega_2)$ do not exist if Martin's Maximum (MM) holds.

Proof of Theorem 5. Let D_1 denote $D \cap \operatorname{cof} \omega_1$. We can assume that D consists exclusively of limit ordinals and that $\alpha + \omega$ belongs to D whenever α belongs to D. Let T be a thin stationary subset of $P_{\omega_1}(\omega_2)$ and assume that T is closed under initial segments. Choose $B \subseteq \omega_2$ such that $T \subseteq L[B]$ and ω_2 equals (ω_2 of L[B]). An ordinal α is good iff it is a limit ordinal between ω_1 and ω_2 and for every $\beta < \alpha$, cof β equals (cof β in $L_{\alpha}[B]$). The set of good ordinals forms a CUB subset of ω_2 .

For an ordinal α and a set x with $\alpha < \sup(x \cap \text{Ord})$, let α_x denote the least ordinal $\geq \alpha$ in x. Note that if $\alpha < \alpha_x$ and x is Σ_1 elementary in some $L_{\beta}[B]$, β good, then α_x must have uncountable cofinality.

A condition is a pair p = (A, S), where:

1. A is a finite set of disjoint closed intervals whose left endpoints belong to D. (We allow the one-point intervals $[\alpha, \alpha], \alpha \in D$.) Let L_A denote the set of left endpoints of intervals in A.

2. S is a finite set of countable Σ_1 elementary submodels x of some $L_{\beta}[B]$, β good, such that $x \cap \text{Ord}$ belongs to T and $\sup(x \cap \alpha)$ belongs to D whenever α belongs to $(x \cap D_1) \cup \{\omega_2\}$.

3. For each interval $I = [\alpha, \beta]$ in A and each $x \in S$:

3a. If I intersects x then I belongs to x.

3b. If $I = [\alpha, \beta]$ does not intersect x and $\alpha < \sup(x \cap \text{Ord})$ then α_x belongs to L_A .

4. Let F_A be the set of all elements of L_A of cofinality ω_1 , together with ω_2 . For $x \in S$, the F_A -height of x is the least element of F_A greater than $\sup(x \cap \text{Ord})$.

4a. If x belongs to S and α belongs to F_A then $x \cap L_{\alpha}[B]$ belongs to S. 4b. Suppose that $x, y \in S$ have the same F_A -height. Then $x \in y, y \in x$ or x = y.

Write $p = (A_p, S_p)$ and let L_p , F_p denote the L_A , F_A of 1, 4 above. q extends p iff A_q contains A_p and S_q contains S_p . For any condition q^* and $\alpha < \omega_2$ we define $q^* \upharpoonright \alpha$ to be the pair $q = (A_q, S_q)$ where:

 A_q is $A_{q^*} \cap L_{\alpha}[B],$ S_q is $S_{q^*} \cap L_{\alpha}[B].$

Claim 1. Suppose that p belongs to P.

(a) If C is a CUB subset of ω_2 then there exists $\alpha \in D_1 \cap C$ such that p belongs to $L_{\alpha}[B]$ and every subset of α in T belongs to $L_{\alpha}[B]$. For such α , obtain p^* from p by adding the interval $[\alpha, \alpha]$ to A_p (and otherwise leaving p unchanged). Then p^* is a condition extending p.

(b) Let α and p^* be as in part (a) and suppose that q^* extends p^* . Then $q^* \upharpoonright \alpha = q$ is a condition in $L_{\alpha}[B]$ extending p such that every extension of q in $L_{\alpha}[B]$ is compatible with q^* .

Proof of Claim 1:

(a) Such α exist since D_1 is stationary and $T \subseteq L_{\omega_2}[B]$ is thin. Property 1 is satisfied by p^* as α is greater than the right endpoint of any interval in A_p . Property 2 is the same for p^* as for p. Property 3a is the same for p^* as for p, as α does not belong to any element of S_p . Property 3b is the same for p^* as for p, as α is greater than $\sup(x \cap \operatorname{Ord})$ for any $x \in S_p$. And property 4 holds for p^* as $F_{p^*} = F_p \cup \{\alpha\}, \ x \cap L_{\alpha}[B] = x$ for all $x \in S_p$ and $x, y \in S_p$ have the same F_{p^*} -height iff they have the same F_p -height.

is the same for p^* as for p, as α does not belong to any element of S_p .

(b) Suppose that q^* extends p^* and set $q = q^* \upharpoonright \alpha$.

Subclaim 1. q is a condition in $L_{\alpha}[B]$ which extends p.

Clearly q, if a condition, extends p since q^* does and p belongs to $L_{\alpha}[B]$. To verify that q is a condition, we need only verify properties 3b and 4.

3b. Assume that $I \cap x = \emptyset$ and the left endpoint β of $I = [\beta, \gamma]$ is less than sup $(x \cap \text{Ord})$, where I belongs to $A_{q^*} \cap L_{\alpha}[B]$ and x belongs to $S_{q^*} \cap L_{\alpha}[B]$. Then since q^* is a condition, β_x is the left endpoint of some interval J in S_{q^*} . But since $[\alpha, \alpha]$ belongs to A_{q^*} , the right endpoint of J is less than α and therefore J belongs to $A_{q^*} \cap L_{\alpha}[B] = A_q$.

For property 4, first note that $F_q = F_{q^*} \cap \alpha$, together with ω_2 .

4a. If x is in S_q and $\beta \in F_q$ then $x \cap L_\beta[B]$ is in S_{q^*} and therefore also in $S_q = S_{q^*} \cap L_\alpha[B]$, since, using our hypothesis on α , $x \cap L_\beta[B]$ is an element of $L_\alpha[B]$.

4b. If $x, y \in S_q$ have the same F_q -height then since they both belong to $L_{\alpha}[B]$, they have the same F_{q^*} -height. Thus the desired conclusion follows as $x, y \in S_{q^*}$ and q^* is a condition.

Now suppose that r is an extension of q, and r belongs to $L_{\alpha}[B]$. We must find a common extension of r and q^* . We define t by

 $A_t = A_r \cup A_{q^*},$ $S_t = S_r \cup S_{q^*}.$

Subclaim 2. t is a condition extending both r and q^* .

Clearly t, if a condition, extends both r and q^* . We now verify that t is a condition, by verifying properties 1-4.

1. The intervals in A_t are disjoint, as r is a condition extending q, all intervals in A_r have right endpoint less than α and all intervals in A_{q^*} not in A_q have left endpoint at least α .

2. Clear.

3. Suppose that I is an interval in $A_t - A_r$ and x belongs to S_r . Then $\sup(x \cap \operatorname{Ord})$ is less than α and the left endpoint of I is at least α . So property 3 is vacuous in this case. Suppose that I belongs to A_r and x belongs to $S_t - S_r$. Then $x \cap L_{\alpha}[B]$ belongs to $S_q \subseteq S_r$ and therefore property 3 holds for I and $x \cap L_{\alpha}[B]$. It follows that 3a holds for I and x, since if I intersects x it must also intersect $x \cap L_{\alpha}[B]$. And 3b holds for I and x: If I is disjoint from x and the left endpoint β of I is less than $\sup(x \cap \operatorname{Ord})$ then I is also disjoint from $x \cap L_{\alpha}[B]$ and either (i) β is less than $\sup(x \cap \alpha)$, in which case $\beta_x = \beta_{x \cap \alpha}$ and therefore the result follows since r is a condition, (ii) $\beta_x = \alpha$, in which case the result follows since $[\alpha, \alpha]$ belongs to A_{q^*} , or (iii) $\beta_x = \alpha_x$, where I belongs to A_r and x belongs to S_r , or where I belongs to $A_t - A_r$ and x belongs to $S_t - S_r$, are immediate since r and q^* are conditions.

4a. We must show that if x belongs to S_t and $\beta \in F_t$ then $x \cap L_\beta[B]$ belongs to S_t . If x belongs to S_r then either β is in F_r , in which case $x \cap L_\beta[B]$ belongs to $S_r \subseteq S_t$ since r is a condition, or β is at least α , in which case $x \cap L_\beta[B] = x \in S_r \subseteq S_t$. If x belongs to S_{q^*} then either β is in F_{q^*} , in which case the result follows since q^* is a condition, or β is in F_r , in which case $x \cap L_\beta[B] = (x \cap L_\alpha[B]) \cap L_\beta[B] \in S_r \subseteq S_t$, since $x \cap L_\alpha[B] \in S_q \subseteq S_r$ and r is a condition.

4b. We must show that if $x, y \in S_t$ have the same F_t -height, then $x \in y, y \in x$ or x = y. If x belongs to S_r then the F_t height of x is at most α and therefore y also belongs to S_r ; thus x, y have the same F_r -height and the result follows since r is a condition. If x belongs to $S_{q^*} - S_r$ then the F_t -height of x is greater than α , and therefore y also belongs to S_{q^*} ; thus x, y have the same F_{q^*} -height and the desired conclusion follows since q^* is a condition.

This completes the proof of Claim 1.

Claim 2. Suppose that p belongs to P. (a) For any CUB $C \subseteq P_{\omega_1}(\omega_2)$ there exists a countable elementary submodel $x ext{ of } L_{\omega_2}[B] ext{ such that } x \cap ext{ Ord belongs to } C \cap T, p ext{ belongs to } x ext{ and whenever } \alpha ext{ belongs to } (x \cap D_1) \cup \{\omega_2\}, ext{ sup}(x \cap \alpha) ext{ belongs to } D. ext{ For such } x ext{ obtain } p^* ext{ from } p ext{ by adding } x \cap L_{\alpha}[B] ext{ to } S_p ext{ for all } \alpha \in F_p ext{ (and otherwise leaving } p ext{ unchanged). Then } p^* ext{ is a condition extending } p.$

(b) Let x and p^* be as in part (a). Then if q^* extends p^* there is q in x extending p such that every extension of q in x is compatible with q^* .

Proof of Claim 2:

(a) To see that such x exist, argue as follows. Choose β in D_1 such that $C \cap P_{\omega_1}(\beta)$ is CUB in $P_{\omega_1}(\beta)$. Also choose $y \in T$ such that $y \cap \beta$ belongs to $C \cap P_{\omega_1}(\beta)$ and $\sup(y \cap \alpha)$ belongs to D whenever α belongs to $(y \cap \beta \cap D_1) \cup \{\beta\}$. As T is closed under initial segments, $x = y \cap \beta$ belongs to T and has the desired properties.

Clearly p^* , if a condition, extends p. To verify that p^* is a condition we need only check properties 3 and 4.

3a. As p belongs to x, each interval in A_p belongs to x and therefore the conclusion of 3a holds for x. It follows easily that 3a also holds for $x \cap L_{\alpha}[B]$ whenever α belongs to F_p . 3a holds for other elements of S_{p^*} since p is a condition.

3b. This is vacuous for $x \cap L_{\alpha}[B]$, $\alpha \in F_p$, and holds for other elements of S_{p^*} since p is a condition.

4a. This is true for $x \cap L_{\alpha}[B]$, $\alpha \in F_p$, by definition of p^* , and for other elements of S_{p^*} since p is a condition.

4b. Suppose that $y, z \in S_{p^*}$ have the same F_{p^*} -height (= F_p -height). If both y, z belong to S_p then the desired conclusion follows since p is a condition. Assume that $y = x \cap L_{\alpha}[B]$ where α belongs to F_p . If z belongs to S_p then z belongs to x and since it has the same F_p -height as y, must also belong to $L_{\alpha}[B]$; hence z belongs to y. If z is of the form $x \cap L_{\beta}[B], \beta \in F_p$, and has the same F_p -height as y then z = y, since the F_p -height of $x \cap L_{\beta}[B]$ equals β for any $\beta \in F_p$.

(b) Let q^* extend p^* and define q as follows:

 $\begin{array}{l} A_q \text{ is } A_{q^*} \cap x, \\ S_q \text{ is } S_{q^*} \cap x \end{array}$

Subclaim 1. q is a condition in x extending p.

Clearly q, if a condition, extends p since q^* extends $p^* \leq p$ and p belongs to x. To check that q is a condition we need only verify properties 3b and 4. 3b. Suppose that I belongs to A_q , I is disjoint from y and the left endpoint α of I is less than $\sup(y \cap \operatorname{Ord})$, where y belongs to S_q . Then α_y is the left endpoint of some $J \in A_{q^*}$ since q^* is a condition. Since J intersects y, J must belong to y and therefore also to x, since y belongs to x. Thus J belongs to A_q .

4a. If y belongs to S_q and α belongs to $F_q \cap \omega_2$ then $y \cap L_{\alpha}[B]$ belongs to S_{q^*} since q^* is a condition. Since both y and α belong to x, we get $y \cap L_{\alpha}[B] \in S_q$. If y belongs to S_q then $y \cap L_{\omega_2}[B] = y$ and therefore belongs to S_q .

4b. Suppose that $y \in S_q$ has F_q -height α and F_{q^*} -height β . Suppose that β is less than $\sup(x \cap \operatorname{Ord})$. Then either β equals α or is the left endpoint of some interval in A_{q^*} disjoint from x. In the latter case, β_x is the left endpoint of some interval in $A_{q^*} \cap x = A_q$ and therefore β_x belongs to F_q , since it must have uncountable cofinality. Thus $\beta_x = \alpha$. So we conclude that the F_{q^*} -height of y is the least $\beta \in F_{q^*}$ such that either β is less than $\sup(x \cap \operatorname{Ord})$ and $\beta_x = \alpha$, or β is greater than $\sup(x \cap \operatorname{Ord})$. Therefore the F_{q^*} -height of $y \in S_q$ is uniquely determined by the F_q -height of y. If $y, z \in S_q$ have the same F_q -height then they therefore also have the same F_{q^*} -height, and since q^* is a condition, either $y \in z, z \in y$ or y = z, as desired.

Now suppose that r in x extends q. We must find a common extension t of r and q^* . We define t by:

 $A_t = A_r \cup A_{q^*}$ $S_t = S_r \cup \{y \cap L_{\alpha}[B] \mid y \in S_{q^*}, \, \alpha \in F_r\}.$

Subclaim 2. t is a condition extending both r and q^* .

Clearly t, if a condition, extends both r and q^* . We show now that t is a condition.

1. Suppose that I is an interval in A_{q^*} but not in A_r . Then I is disjoint from x. If the left endpoint α of I is at least $\sup(x \cap \operatorname{Ord})$, then I is disjoint from all intervals in A_r , since the latter belong to x. Otherwise α_x is the left endpoint of some interval J in A_q . It follows that the intervals in A_r are disjoint from I, as they belong to x and are either equal to or disjoint from J. Thus A_t consists of pairwise disjoint intervals.

2. We must show that if y belongs to S_t and $\alpha \in (y \cap D_1) \cup \{\omega_2\}$ then $\sup(y \cap \alpha)$

belongs to D. This is clear if y belongs to S_r since r is a condition. It also holds if y belongs to S_{q^*} since q^* is a condition. This implies the result for arbitrary $y \in S_t$ when α is not ω_2 . It remains to show: If $y \in S_{q^*}$, $\alpha \in F_r$ then $\sup(y \cap \alpha)$ belongs to D. Let β be least in $F_{q^*} - \alpha$. If β is not the F_{q^*} -height of $y \cap L_{\beta}[B]$ then $y \cap \alpha = y \cap \beta$ and therefore $\sup(y \cap \alpha)$ belongs to D since q^* is a condition. Otherwise, $y \cap L_{\beta}[B]$ and $x \cap L_{\beta}[B]$ have the same F_{q^*} -height, since α belongs to x. Since q^* is a condition, either $y \cap L_{\beta}[B] \in x \cap L_{\beta}[B]$, $x \cap L_{\beta}[B] \in y \cap L_{\beta}[B]$ or $y \cap L_{\beta}[B] = x \cap L_{\beta}[B]$. In the first case, $y \cap L_{\beta}[B]$ belongs to S_r so $y \cap \alpha = (y \cap \beta) \cap \alpha$ belongs to D since r is a condition. In the latter two cases, α belongs to $y \cap D_1$, and therefore the result follows since q^* is a condition.

3a. Suppose that I is an interval in A_t , y belongs to S_t and I intersects y. We must show that I belongs to y. First we consider the case where I belongs to A_r and y belongs to $S_t - S_r$. Write $I = [\alpha, \beta]$ and $y = z \cap L_{\gamma}[B]$, where z belongs to $S_{q^*} - S_r$ and γ belongs to F_r . Let β^* be the least element of F_{q^*} greater than α . Since we have shown that A_t consists of pairwise disjoint intervals, it follows that β^* is greater than β . Therefore the F_{q^*} -heights of $x \cap L_{\beta^*}[B]$ and $z \cap L_{\beta^*}[B]$ are both β^* , the former since β belongs to x and the latter since z intersects $I = [\alpha, \beta]$. Thus either $z \cap L_{\beta^*}[B] \in x \cap L_{\beta^*}[B]$, $x \cap L_{\beta^*}[B] \in z \cap L_{\beta^*}[B]$ or $x \cap L_{\beta^*}[B] = z \cap L_{\beta^*}[B]$. The first possibility implies that I intersects $y \cap L_{\beta^*}[B] = (z \cap L_{\beta^*}[B]) \cap L_{\gamma}[B] \in S_r$, and therefore since r is a condition, I belongs to $y \cap L_{\beta^*}[B] \subseteq y$, as desired. The second and third possibilities imply that y contains $x \cap L_{\beta^*}[B]$ as a subset and therefore I as an element. Now consider the case where I belongs to $A_t - A_r$ and y belongs to S_r . Then I belongs to A_{q^*} and intersects x, which belongs to S_{q^*} . Thus I belongs to x, contradicting the fact that I does not belong to $A_q \subseteq A_r$. The case where I belongs to A_r and y belongs to S_r follows since r is a condition. Finally, if I belongs to $A_t - A_r$ and y belongs to $S_t - S_r$, write $y = z \cap L_{\alpha}[B]$ where $z \in S_{q^*}$ and $\alpha \in F_r$. Since q^* is a condition, I belongs to z. If I does not belong to y, then I intersects x and therefore belongs to x, again since q^* is a condition. But this contradicts the hypothesis that I does not belong to A_r .

3b. Suppose that $I = [\alpha, \beta]$ belongs to A_t , y belongs to S_t , I is disjoint from y and α is less than $\sup(y \cap \operatorname{Ord})$. We must show that α_y is the left endpoint of some interval in A_t . First we consider the case where I belongs to A_r and y belongs to $S_t - S_r$. Write $y = z \cap L_{\gamma}[B]$ where z belongs to S_{q^*} and γ belongs to F_r . Let β^* be the least element of F_{q^*} greater than β . If $\alpha_y = \beta^*$

then α_y is the left endpoint of some interval in A_{q^*} and we are done. If $\alpha_y > \beta^*$, then let J be the interval of A_{q^*} with left endpoint β^* . Since q^* is a condition and $\alpha_y = \alpha_z$, J is not an element of z and therefore is disjoint from z. Since q^* is a condition, $\alpha_y = (\beta^*)_z$ is the left endpoint of some interval of A_{q^*} , as desired. Finally, if $\beta < \alpha_y < \beta^*$, it follows that $x \cap L_{\beta^*}[B]$ and $z \cap L_{\beta^*}[B]$ both have F_{q^*} -height β^* , and therefore $x \cap L_{\beta^*}[B] \in z \cap L_{\beta^*}[B]$, $z \cap L_{\beta^*}[B] \in x \cap L_{\beta^*}[B]$ or $x \cap L_{\beta^*}[B] = z \cap L_{\beta^*}[B]$. The first and third of these possibilities contradict our hypothesis that $I \in x$ is disjoint from y. In the second possibility, $z \cap L_{\beta^*}[B]$ belongs to S_q and since $\alpha_y = \alpha_z$ is less than β^* , we have that α_y is the left endpoint of some interval in A_r since r is a condition. Next we consider the case where I belongs to $A_t - A_r$ and y belongs to S_r . Thus I belongs to A_{q^*} and must be disjoint from x, else it would belong to x and therefore to A_r . As α is less than $\sup(x \cap \operatorname{Ord})$, it follows that α_x is the left endpoint of some interval in A_{q^*} , which in fact belongs to A_r . If $\alpha_y = \alpha_x$ then we are done. Otherwise α_y equals $(\alpha_x)_y$, which must be the left endpoint of an interval in A_r , since r is a condition. The remaining two cases, where either I belongs to A_r and y belongs to S_r , or where I belongs to $A_t - A_r$ and y belongs to $S_t - S_r$, follow since both r and q^* are conditions.

4a. We must show that if y belongs to S_t and α belongs to F_t then $y \cap L_{\alpha}[B]$ belongs to S_t . This is clear if y belongs to S_r and α belongs to F_r , or if y belongs to F_{q^*} and α belongs to F_{q^*} , since r and q^* are conditions. This is also true if y belongs to S_{q^*} and α belongs to F_r , by definition of S_t . And we may assume that y belongs to $S_r \cup S_{q^*}$. So we need only check the case where y belongs to S_r , α belongs to F_{q^*} and α is less than $\sup(y \cap \text{Ord})$. If α belongs to x then it also belongs to F_r so we are done since r is a condition. Otherwise α_x is defined and belongs to F_r . So since r is a condition, $y \cap L_{\alpha}[B] = y \cap L_{\alpha_x}[B]$ belongs to S_r .

4b. We must show that if $y, z \in S_t$ have the same F_t -height then either $y \in z$, $z \in y$ or y = z. Note that y, z also have the same F_r -height and the same F_{q^*} -height. If y, z both belong to S_r then the desired conclusion follows since r is a condition. Suppose that y, z are of the form $y^* \cap L_{\alpha}[B], z^* \cap L_{\beta}[B]$, respectively, where y^*, z^* belong to S_{q^*} and $\alpha, \beta \in F_r$. We may assume that α, β are the F_r -heights of y, z, respectively, and therefore $\alpha = \beta$. Let α^* be the common F_{q^*} -height of y, z. Then $y^* \cap L_{\alpha^*}[B], z^* \cap L_{\alpha^*}[B]$ have F_{q^*} -height α^* and therefore since q^* is a condition, we have $y^* \cap L_{\alpha^*}[B] \in z^* \cap L_{\alpha^*}[B]$, $y^* \cap L_{\alpha^*}[B] = z^* \cap L_{\alpha^*}[B]$ or $z^* \cap L_{\alpha^*}[B] \in y^* \cap L_{\alpha^*}[B]$. The second possibility

yields y = z. The first possibility implies that y belongs to $z^* \cap L_{\alpha^*}[B]$ since it is an initial segment of $y^* \cap L_{\alpha^*}[B]$; as $y \in L_{\alpha}[B]$ we get $y \in z^* \cap L_{\alpha}[B] = z$. The third possibility is handled identically to the first, with y and z switched. Finally assume that y belongs to S_r and $z = z^* \cap L_{\alpha}[B]$ where $z^* \in S_{q^*}$ and $\alpha \in F_r$. We may assume that α is the F_r -height of z, which is also the F_r -height of y. Let α^* be the common F_{q^*} -height of y and z. Then α^* is also the F_{q^*} -height of $x \cap L_{\alpha^*}[B]$, since x contains y, and is the F_{q^*} -height of $z^* \cap L_{\alpha^*}[B]$. Since q^* is a condition, we have $z^* \cap L_{\alpha^*}[B] \in x \cap L_{\alpha^*}[B]$, $x \cap L_{\alpha^*}[B] \in z^* \cap L_{\alpha^*}[B]$ or $z^* \cap L_{\alpha^*}[B] = x \cap L_{\alpha^*}[B]$. Under the first possibility, $(z^* \cap L_{\alpha^*}[B]) \cap L_{\alpha}[B] = z$ belongs to S_r , so we are done since r is a condition. The second and third possibilities imply that $y \in z^* \cap L_{\alpha}[B] = z$.

This completes the proof of Claim 2.

Claim 1 implies that ω_2 is preserved. Claim 2 implies that ω_1 is preserved. As P has cardinality ω_2 , all cofinalities are preserved.

Claim 3. Let G be P-generic and $C_G = \{\gamma \mid \gamma \text{ is a left endpoint of some interval in } \cup \{A_p \mid p \in G\}\}$. Then C_G is a CUB subset of D.

Proof of Claim 3:

It follows from *Claim 1 (a)* that C_G is unbounded. We show that C_G is closed.

Suppose that p is a condition and for the sake of contradiction, $p \Vdash (\alpha \in \text{Lim } C_G \text{ and } \alpha \notin C_G)$. We may assume that for each $y \in S_p$, if α_y is defined and forced by some extension of p to belong to C_G , then α_y is the left endpoint of some interval in A_p ; otherwise we can enlarge A_p without changing S_p to guarantee this property. Note that for $q \leq p$, α does not belong to any interval in A_q , else q forces either that α belongs to C_G or is not the limit of elements of C_G .

Suppose that y belongs to S_p , α is not in Lim $(y \cap \text{Ord})$ but α is less than $\sup(y \cap \text{Ord})$. Then observe that α_y must be a left endpoint of some interval in A_p , else by requirement 3b on conditions, no extension of p can introduce a new interval with left endpoint between $\sup(y \cap \alpha)$ and α , and hence p cannot force that α is a limit point of C_G . Let β be the least element of F_p

greater than α and consider $S = \{y \in S_p \mid \alpha \leq \sup(y \cap \operatorname{Ord}) < \beta\}$. Then by requirement 4b on conditions, the elements of S form an \in -chain.

Assume first that $y \cap \alpha$ is cofinal in α for some $y \in S$, and let y_0 be the \in -least such. Note that if α_{y_0} is defined and is the left endpoint of some interval in A_p then α must belong to D, by requirement 2 on conditions. We show that we can extend p to force either that α belongs to C_G or that α is not a limit point of C_G , achieving the desired contradiction. Note that $D \cap y_0 \cap \alpha$ must be cofinal in α , as there are cofinally many $\gamma < \alpha$ which are forced by extensions of p into C_G and for any such $\gamma \notin y_0$, γ_{y_0} belongs to D by requirement 3b on conditions. Since $\gamma + \omega$ belongs to D whenever γ does, it follows that $D \cap y_0 \cap \alpha \cap \operatorname{cof} \omega$ is also cofinal in α .

If α_{y_0} is defined and not the left endpoint of some interval in A_p , then let γ be an element of $D \cap y_0 \cap \alpha \cap \operatorname{cof} \omega$ greater than the right endpoint of any interval of A_p with left endpoint less than α , and larger than $\sup(y \cap \alpha)$ for all $y \in S_p$ with $\sup(y \cap \alpha) < \alpha$. We claim a condition results when the interval $I = [\gamma, \alpha_{y_0}]$ is added to p: I is disjoint from intervals of A_p with left endpoint less than α by choice of γ . And it is disjoint from intervals of A_p with left endpoint greater than α since by assumption, α_{y_0} is not the left endpoint of an interval of A_p , and therefore by 3a, 3b neither is any ordinal between α and α_{y_0} . I does not intersect any $y \in S_p$ with $\sup(y \cap \beta) < \alpha$ by choice of γ . I does not intersect any $y \in S_p$ with $\sup(y \cap \alpha) < \alpha < \sup(y \cap \beta)$: For such y we have $y \cap \beta \in y_0$ and therefore $y \cap \beta \subseteq y_0$; also $\alpha_y > \alpha_{y_0}$ since, as observed earlier, α_y must be a left endpoint of some interval of A_p and by assumption α_{y_0} is not. Any other $y \in S_p$ contains y_0 as an element and therefore as a subset, and therefore also the interval I as an element. For those $y \in S_p$ disjoint from I with $\gamma < \sup(y \cap \operatorname{Ord})$, we have $\gamma_y = \alpha_y$, and as observed earlier, α_{y} is the left endpoint of an interval of A_{p} . This completes the verification that adding I to p results in a condition.

If α_{y_0} is defined and the left endpoint of some interval in A_p , then let $I = [\alpha, \alpha]$. We claim that a condition results when we add I to p: Of course I is disjoint from all intervals of A_p since α does not belong to any such interval. Trivially, if I intersects $y \in S_p$ then it belongs to y. If I is disjoint from $y \in S_p$ and $\alpha < \sup(y \cap \operatorname{Ord})$, then $\alpha_y \ge \alpha_{y_0}$, as otherwise $y \cap L_\beta[B] \in S$, $y_0 \in y \cap L_\beta[B]$ and therefore $\alpha = \sup(y_0 \cap \alpha_{y_0}) \in y$, against our hypothesis.

So α_y must be a left endpoint of some interval of A_p , else by requirements 3a,3b on conditions, α_{y_0} could not be. This completes the verification that adding I to p results in a condition.

If α_{y_0} is undefined then again set $I = [\alpha, \alpha]$. We claim that a condition results when we add I to p: By the argument of the previous paragraph, it suffices to show that if I is disjoint from $y \in S_p$ and $\alpha < \sup(y \cap \text{Ord})$ then α_y is the left endpoint of some interval of A_p . If α_y is at least β , then this must be the case, as otherwise β could not be the left endpoint of such an interval. If α_y is less than β then $y \cap L_{\beta}[B]$ belongs to S and therefore either y_0 is an element of y, contradicting $\alpha \notin y$, or $\alpha_y \ge \alpha_{y_0}$. If α_y equals α_{y_0} then α_y is the left endpoint of some interval of A_p by hypothesis, and if α_y is greater than α_{y_0} then it must be the left endpoint of an interval of A_p , else α_{y_0} could not be the left endpoint of such an interval. This completes the verification that adding I to p results in a condition.

Lastly, we treat the case where $y \cap \alpha$ is not cofinal in α for all $y \in S$. In this case we choose $I = [\gamma, \alpha]$, where γ is an element of $D \cap \alpha \cap \operatorname{cof} \omega$ greater than the right endpoint of any interval of A_p with left endpoint less than α , and larger than $\sup(y \cap \alpha)$ for all $y \in S_p$ with $\sup(y \cap \alpha) < \alpha$. We claim that a condition results when we add I to p: I is disjoint from all intervals in A_p by choice of γ . I is disjoint from each $y \in S_p$, as $y \cap \alpha$ is contained in γ by choice of γ and the case hypothesis, and if α belongs to y, we have $\alpha < \sup(y \cap \operatorname{Ord})$, which, as observed earlier, implies that $\alpha_y = \alpha$ the left endpoint of an interval of A_p , an impossibility. If y belongs to S_p and $\gamma < \sup(y \cap \operatorname{Ord})$ then α_y must be the left endpoint of an interval of A_p , as observed earlier. This completes the verification that adding I to p results in a condition.

This completes the proof of Theorem 5.

A remark and some questions. The hypothesis that D is fat stationary is not necessary for Theorem 5. The proof only uses that there is a thin stationary subset S of $P_{\omega_1}(\omega_2)$ such that for $x \in S$, $\sup(x \cap \alpha)$ belongs to D whenever α belongs to $x \cap D \cap \text{Lim } D$ or $\alpha = \omega_2$. However this hypothesis is not substantially weaker than the one stated in Theorem 5 as, at least under CH, there is a countably distributive, cofinality-preserving forcing that adds a fat stationary subset to such a set D. Can the assumption of a thin stationary subset of $P_{\omega_1}(\omega_2)$ be entirely eliminated from the statement of Theorem 5? Is Theorem 5 still true if CH is added to both its hypothesis and conclusion? And is there a version of Theorem 5 for ω_3 ?

References

- Abraham, U. and Shelah, S. Forcing closed unbounded sets, Journal of Symbolic Logic, Vol. 48, pp. 643–657, 1983.
- [2] Baumgartner J., Harrington L. and Kleinberg E. Adding a closed unbounded set, Journal of Symbolic Logic, Vol. 41, pp. 481–482, 1976.
- [3] Friedman, S. *Cardinal-preserving extensions*, to appear, Journal of Symbolic Logic.