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We present here an approach to the fine structure of L based solely on
elementary modeltheoretic ideas, and illustrate its use in a proof of Global
Square in L. We thereby avoid the Lévy hierarchy of formulas and the
subtleties of master codes and projecta, introduced by Jensen [1972] in the
original form of the theory. Our theory could appropriately be called “Hy-
perfine Structure Theory”, as we make use of a hierarchy of structures and
hull operations which refines the traditional L,— or .J,—sequences with their
Y ,-hull operations.

1 Introduction

In 1938, K. Godel defined the model L of set theory to show the relative
consistency of Cantor’s Continuum Hypothesis. L is defined as a union

of initial segments which satisfy: Lo = (), L) = Ua<)\ L, for limit ordinals
A, and. crucially, L,4; = the collection of 1st order definable subsets of L,.
Since every transitive model of set theory must be closed under 1st order
definability, L turns out to be the smallest inner model of set theory. Thus

it occupies the central place in the set theoretic spectrum of models.
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The proof of the continuum hypothesis in L is based on the very uniform
hierarchical definition of the L-hierarchy. The Condensation Lemma states
that if 7 : M — L, is an elementary embedding, M transitive, then M =
Lz for some @ ; the lemma can be proved by induction on a. If a real,
i.e., a subset of w, is definable over some L. then by a Lowenheim-Skolem
argument it is definable over some countable M as above, and hence over
some Lz, @ < w;y. This allows one to list the reals in L in length w; and
therefore proves the Continuum Hypothesis in L.

This type of argument has been refined in a striking way in R. Jensen’s
Fine Structure Theory [1972]. Roughly speaking, Jensen was able to find,
uniformly, a Skolem function for ¥,—formulae over L, which itself has a
Y., —definition over L,. If an interesting phenomenon like the collapse or
the singularisation of an ordinal is ¥,—definable over L, we can use the
Y. ,—Skolem function to achieve that effect canonically. Simultaneously, the
Y. ,—Skolem function produces substructures which condense down to Lz’s,
preserving the definition of the Skolem function. So the construction over L,
will “cohere” nicely with an analogous construction over Lz which is essential
for the coherence properties in Jensen’s principles [0 and “morass”. These
principles have proved to be central to the resolution of a number of impor-
tant questions in set theory, not necessarily connected to the constructible
universe.

The method of Jensen presents a veritable tour de force even by today’s
standards of set theoretical sophistication. The L,’s, or rather the J,’s. have
to be expanded by (iterated) projecta, standard parameters, mastercodes
and reducts to ensure the preservation of higher levels of the Lévy—hierarchy
of formulae in condensation arguments. Only after understanding those fine-
structural notions can one turn to the combinatorial aspects of a O-proof,
for example. These complications have motivated attempts to simplify fine
structure theory. Silver and then Magidor [1990] work with Skolem functions
for ¥,~formulae which are not quite ¥, ~definable but are still preserved in
condensations. Such “approximations” to fine structure theory were partic-
ularly successfull in mild applications of the theory as. e.g., in the proof of
the famous Jensen Covering Theorem. Earlier, Silver had employed “ma-
chines” on ordinals which compute the truth predicate for the L,-hierarchy
and which allow to concentrate on the combinatorics of Jensen’s construc-

tions (Silver [1977], Devlin [1984] and Richardson [1978]). The approach of
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Friedman [1997], based on Jensen’s ¥* approach, eliminates certain unnatu-
ral parameters. but is otherwise very close in spirit to Jensen’s original fine
structure theory.

In this article we present a natural alternative to fine structure theory,
employing elementary concepts from model theory rather than ideas derived
from recursion theory. The approach shares some technical properties with
Silver machines but we are solely working on the basis of the familiar L,—
hierarchy which we shall expand by restricted Skolem functions.

As a motivation let us consider the process of singularisation of an ordinal
B in L. Suppose L |= (3 is singular. Let v be minimal such that over L., we
can define a cofinal subset C' of  of smaller ordertype; we can assume that
C' takes the form

C={z€p|3dz<a:zis <y — minimal such that L, = ¢(z,p.z)}

where a < 3, ¢ is a first order formula, p'is a parameter sequence from L.

If
Sy(y, ) = the <, —minimal z such that ¢(z,7, )
is the term for the Skolem function for ¢, then

C= Sé””{ﬁhx |z < a}

and [ is singularised by Sé” restricted to arguments lexicographically smaller
than the tuple p~a. where the lexicographical order <
<g-order. The foregoing suggests saying that 3 is singularised at the location

lex i5 derived from the

(7, ¢, (P, @)), and that the right singularising structure for 3 is of the form

Lygimay = (Lo, €, <0, ..., Sk, Sk S {8 | <! a0
where g, ¢1,... 1s a fixed w—enumeration of the €—formulae, and where

¢n = . The inclusion of the Skolem functions for all subformulae of ¢, will
ensure the condensation property for such singularising structures.

These structures provide us with a very fine interpolation between suc-
cessive L., -levels:

The enriched hierarchy satisfies Condensation and a Finiteness Property
which is reminiscent of the key property of Silver machines.



In the present article we apply the method to establish a Global Square
principle in L, incorporating ideas of .J. Silver (see Devlin [1984]) and S. Fried-
man [1997] into the proof. We have also found very natural arguments for
(k,1)-morasses and for the Covering Theorem which we plan to publish in a
subsequent article.

It is our hope that our approach will make the Fine Structure of L more
accessible to a wide audience of set-theorists, and separate definability issues
from the combinatorial content of Jensen’s arguments.

2 Names and Locations

For any a € ORD, ¢(u,?) a first-order formula with n + 1 free variables,
and Z a sequence from L, of length n, let I(a, ¢, %) denote {y € L, | L, E
¢(y,2)}. Thus we can think of the above triples (a, ¢, %) as names for
elements of L. A central idea in our theory is to also view (a,¢. %) as a
location for the structure L, , z in the fine hierarchy with an associated hull
operation L, . 7{-} which approximates the usual Skolem hull operation on
subsets of L,. Before we define these notions we first discuss the ordering
of names (=locations) and prove a condensation result for “constructibly—
closed” subsets of L,.

Wellorder names and constructible sets in the standard way as follows:
Consider €—formulae built using -, A, V and the existential quantifier 4.
We agree that every formula ¢ has a distinguished variable used for the
I-operation and for existential quantifications. When we write ¢(u, Z), we
intend that u is distinguished in ¢; then Jug with any choice of distinguished
variable is a new permitted formula. Let ¢g. ¢1. ¢2. ... be an w—ordering of
permitted formulas, subformulas appearing earlier, which we assume to be
fixed throughout this article.

We take < to be the vacuous ordering on Lo = . If <, is defined
as a wellordering of L, then order sequences from L, by Z <!* ¢ iff Zis
lexicographically less then ¥, using <, on the components of ¥ and y. Names
(B, ¢, %) where 3 < a are ordered by:

(B: m: &) < (v m: ) Il (B <)

V(B=7Am<n)

V(/Bzv/\m:n/\;?:'<i3exg).



And for y € L,41 let N(y) denote the < -least (3, ¢, ¥) such that I(3, ¢, 7) =
y. Then define y <,y z iff N(y)< N(z). Finally for limit A set <,=
Ua<A <4. Thus we obtain a wellordering <;= UanRD <, of L and a
wellordering < of names (a, ¢, ¥) used to denote elements of L.

By an a-location we understand a location s of the form s = (a, ¢, Z).
The < -smallest a-location is (a, o, 6) with 0 a vector of 0’s of appropriate
length. The < —successor of s is denoted by s*.

2.1 Constructible Operations and Basic Constructible
Closures.

The basic constructible operations are [ and N as defined above and a Skolem
function:

Interpretation. For a name (a,¢,7), set I(a,¢,7) = {y € Lo | Lo E
ely. @)}

Naming. For y € L, let N(y) be the <-least name (a,, ) such that
I{a,¢,7) =y.
Skolem Function. For a name (a,¢. %), let S(a,¢,Z) be the <;— least

y € L, such that L, = ¢(y. %), and set S(a, ¢, &) = 0 if such a y does
not exist.

As we do not assume that a is a limit ordinal and therefore do not have
pairing. we make the following nonstandard definition.

Definition: For X C L and ¥ a finile sequence we write ¥ € X if each
component of ¥ belongs to X. If (a, ¢, %) is a name we write (o, ¢, 7) € X
to mean that o € X and ¥ € X.

A set or class X C L is constructibly closed, written X < L, iff X is closed
under I, N and S, i.e.,

(a.¢.7) € X — I(a,¢.7) € X and S(a,¢.7) € X,
ye X—N(y) e X.

For X C L let L{X} denote the C—smallest Y O X such that'Y < L.
Clearly each L, is constructibly closed.



Proposition 1 Let X be constructibly closed and let w: X = M be the Mos-
towski collapse of X onto the transitive set M. Then there is an ordinal o
such that M = L, and © preserves I, N, S and <p:

7 (X, €, <0, I,N,8) = (Lo, €, <1, 1,N,S).

Proof: We prove this for X C L., by induction on 5. The cases v = 0 and
7 limit are easy. Let y = 8+ 1 and X C Lgyy but X € L. Closure under
N and [ implies that X = {/(3,¢,%) | ¥ from X N Lg}. Inductively let
7: X N Lg = L,. Closure under S and the fact that 3 belongs to X imply
that X N Lg is elementary in Lg. It follows that 7 extends to 7: X = L 4.
Preservation of I, N, S and <, follows also from the elementarity of X N Lg
in Lﬁ. ]

2.2 The Fine Hierarchy.
Definition: Let s be a location, s = (o, ¢m. ). Sel

Ly=(La.€.<p,I.N,S, 8L Sk Sl 1 2.0.0....)

where Sé"(ﬁ) = S(a, ¢, Y), Si‘;’q [ & is the restricted Skolem function Si‘; I
{7 |y <<z} and 0,0,... are empty functions.
(Ls | s is a location) is the fine constructible hierarchy.

Each structure of the fine hierarchy possesses an associated hull operator.

Definition: Let s = (a, ¢m. %) be a location. A set Y C L, is closed in
Lg, written Y a L, if Y is an algebraic substructure of Ly, i.e., if Y is closed
under I, N, S, Sf;‘(;’, Si‘f,..., Ségl [ 7.

For a set X C L, let L{X} be the C—smallest sel Y such that Y < Ly and
Y O X. We call L{X} the Lghull of X.

The fine hierarchy is a very slow growing hierarchy which nonetheless sat-
isfies full condensation. This is the basis for its applications to fine structure
theory.

Proposition 2 (Condensation) Let s = (o, ¢m, ) be a location and sup-
pose X is a set such that X < L.
Then there is a unique isomorphism

mi(X, €. <, [N, S, Ska SLe . SLa 1@ ()

©
> [y = (Lz. €, <1, [,N. S, Sk Sl= . Sl= 1 3. §,...).



Proof: let m: X = Lz be given by Proposition 1. Note that X is ¢;—
elementary in L, for : < m, since X is closed under the Skolem functions
for every proper subformula of ;. Hence n7': Lz — L, is ¢;—elementary for
i <m. Let r = (@, ;, ) be a location such that 7 7(r) := (a, ¢;, 771 (@)) <
(@, @m, ). Then z := SLe (7~ (w)) belongs to X and L, | ¢i(z, 7)) iff
Lz | ¢i(m(2), ). Moreover, if there is Z € Lz such that Lz |= ¢,(Z, W), then
m(z) is the <z—minimal such element, because z <, 7(z) and Lz | ¢;(Z, W)
imply L, | ¢i(77(Z), 77" (w)) and 77! (Z) <z, z, contradicting the definition
of S,,. Hence

m(2) = m(Sge (v ())) = S (0)

as required. The location 5 of the condensed structure is defined as the < -
smallest strict upper bound of all r such that 7=1(r) < s and 3 = <-—sup{r |
(r)<s}t. O

Usually, we shall have i = m in the proposition, except when for every
W € Lz of the right length

77 (1) < 7

_ Lz ¢l= Lz
Ls=(Lz,€,<r,I,N,S, 8,7, 5,7.....5,7.0....)
observing that Séiﬂ 10 = 0.
The condensation situation in proposition 2 is often written as 7: X = Ls.
The slow growth of the Ls—hierarchy is expressed by a finiteness property
which says that at successor locations essentially only one more point enters

the hulling process, and by continuity properties saying that at limit locations
we just collect results of previous processes.

Proposition 3 (Finiteness Property) Let s = (a,¢, Z) be an a-location.
Then there exists z € L, such that for any X C L,:

Ls+ {X} g LS{X U {Z}}

Proof: The expansion from Ls to L provides us with at most one new
Skolem value in forming hulls, namely SZ(Z). Take this SI=(Z) to be z. O



Proposition 4 (Monotonicity) (a) Suppose that so and s, are a-loca-
tions such that s <sy. Then Ly,{X} C L, {X} forall X C L,,.

(b) Suppose that ag and oy are ordinals such that ag < ay. If so, s1 are ag—
and ay—locations, respectively, and X C L,, then Ly ,{X} C Ls,{X U

{ao}}

Proof: Clear from the definitions. O

For the continuity property we have to distinguish between three kinds
of limit locations:

Proposition 5 (Continuity)
(a) If o is a limit ordinal, s = (a,tpo,(_)‘), and X C L, then
LAX} = L{X} = | Lippos{X N Ls}.
B<a
(b) If s=(a+ 1,990,6) and X C L, then
LAX U{a}}nL,=L{XU{a}}NL,
= U{LT{X} | r is an a-location}.
(¢c) Ifs=(a,¢,7)is a < -limit, s # (a,gco,a), and X C L, then
LAX} = U{LT{X} | r is an a-location, r < s}.

Proof: (a) is clear from the definitions since the hull operators considered
only use the functions I, N. S.

(b) The first equality is clear. The other is proved by two inclusions.

(2) If z is an element of the right hand side, z is obtained from elements of
X by successive applications of I, N, S and S£§ for n < w. Since Ség(g) =
S(a, ¢n, ¥), z is also obtainable from elements of X U{a} using only the I, N
and S operations. Hence z belongs to the left hand side.

(C) Conversely, consider z € L{X U {a}} N L,. There is a finite sequence
computing z in L{X U {a}}:

Yo. Y1; --- s Y = 2

such that each y; is an element of X U {a} or y; is obtained from {y; |1 < j}
by using I. N. S:

Y = [(B.¢n§) ot y;=S(B.paif) or y;isacomponent of N(y)



for some 3.7,y € {y; |1 < j}
We show by induction on 57 < k:

ify, € L, theny; €U = U{LT{X} | r is an a-location}.

Case 1: y; € X U{a}. Then our claim is obvious.

Case 2: y; = 1(3,¢n. ¥) (as in the first of the three ways of obtaining y; from
¥ € {yi|i < j}. displayed above). If 3 < a, then 3,y € U by the induction
hypothesis and hence y; € U. If 3 = a, then ¥ € U by the induction
hypothesis. Setting

(v, @) = Vu (u € v @ (u, @)

with distinguished variable v we obtain y; = Sja(g) el.

Case 3: y; = S(03,¢n. y) (the second way of obtaining y;). If 3 < a, then
B.jeUandy; e U. If 3=a, then g€ U and y; = SL*(y) € U.

Case 4: y; is a component of N(y;) for some i < j (the third way of obtain-
ing y;).

Case 4.1: y; € L,. Then y; € U by the induction hypothesis. As U is closed
under NV, we get N(y;) € U, i.e., each component of N(y;) belongs to U.
Case 4.2: y; € Loy1 \ La. Then y; = a, or y; = I(a, 9. y) for some § €
{yn|h < i}. Since a = I(a, “u is an ordinal”, (), we may assume the latter.
N(y;) will be of the form (o, x, (¢co, ..., cm-1)). We obtain ¢q in U as follows:
If

with distinguished variable vy then ¢ = SL=(y) € U, since, inductively,
y € U. We obtain ¢; in U as follows: If

X1(v1, W) = Fvg ... vy Vu (x(u, vo, V1, . .., V1) — (U, W))

with distinguished variable vy then ¢; = Sél"(coﬁy_') € U. Proceeding like
this we see that y; € U.
(¢) is again obvious from the definitions. O

This completes our list of basic properties of the hull operations associated

with the fine hierarchy. They are sufficient to establish Jensen’s Square
Principle in L, which we consider next.



3 A Proof of Square

Theorem (Jensen): Assume V = L. There exists a sequence (Cy |
3 singular ) such that

(a) Cg is closed unbounded in 3,

(b) Cgz has ordertype less than 3,

(¢) if B is a limil point of Cg then B is singular and Cz=0CsN .

Proof: Let 8 be singular. The following claim gives a reformulation of the
singularity of 3:

Claim 1:  There is a location s = (v, ¢, %), v > 3, and a finite set p C L,
such that

{B<p|B=pNLABUP}H}
is bounded in (3.
Proof: ~ Choose «a less than 3 and a function f:a — 3 cofinally. Choose
v € ORD such that f € L,. Set p = {f} and s = (7,¢n+1,6) where n is

a natural number (iloosen such that ¢, = vg = vi(ve) with distinguished
variable vg. If a < 3 < 3 then

BNLABUPY D BN LaUp} D fa.
Hence 3N L,{3 U p} is cofinal in 3, and so 3N L {B3Up} # 3. O (Claim 1)

Let s = s(3) be <-minimal satisfying Claim 1, together with the finite set
p C L,. We show that s is a <-limit which can be nicely approximated
from below.

Claim 2: s is a limit location.

Proof: ~ Assume that s = r*. By the Finiteness Property (Proposition 3)

there exists a z € L., such that if 3 is less than 3 then

L{BUp} C L{BUpU{z}}.
So

{B<pB|B=8NLABUpU{z}}} C{B<B|B=pBNLABUp}}.
Hence {3 < 3| =pNLA{FUpU{z}}}is bounded in 3, contradicting the
minimality of s. O (Claim 2)

10



Claim 3: s # (5,990,6).

Proof: Assumf that s = (5,990,6). Choose 3y less than 3 such that
p C Lg,. If By <3 < 3 then

BCanLABuUpyCANL{BUPC BN Lz=4,

contradicting the fact that s and p satisfy the requirements in Claim 1. O
(Claim 3)

Claim 4: s # (v.¢0,0) for limit 7.

Proof: ~ Assume that there is a limit ordinal v such that s = (v, ¢,
Choose 7g less than « such that p C L.  and 79 > v, and set so = (70. ¥o,
Then

{B<plB=pnL{BUp}y C{B<B|B=p8NLABUP}}

Hence {3 < 3| B =030 L, {BUp}} is bounded below 3, contradicting the
minimality of s. O (Claim 4)

OOy
~— e

In defining Cs we shall consider three special cases and a generic case. In
the special cases, 3 will have cofinality w and we can pick any w-sequence
cofinal in 3 as Cjp.

Special Case 1. s = (a+ 1,(,90,6) for some a.

Every element of L,y; can be “named” by a and finitely many elements of
L,. So we may assume that p is of the form p = qU {a} with ¢ C L,.
Define a strictly increasing sequence (8, | n < w) of ordinals less than
recursively: Let

Bo=max{f < 3|3 =p3N0LA3UpP}} < 6.
Given 3, choose (3,11 greater than (3, least such that

ﬁ'ﬂ‘}‘l = /6 m L(a7¢n76){/8n+1 U Q}

11



Since s = (o, ¢y, 6) < (a+1, ¢, 6) the definition of s implies that 3,4, exists
below 3. Let 8, = J, ., Bn- Then

BN LABUpy=pNLAB,UqU{a}}
=4N U{Lr{ﬁw Ug} | ris an a-location}
= U /8 N L(a,¢n,6){/8w U Q}

n<w

=JBnLi, {81 Uaq}
nlw

= U /Bn+1 = Bw;
n<w

the second equality uses Proposition 5(b), the third and fourth use the mono-
tonicity property of our hulls (Proposition 4(a)). Now by the definition of 3,
we must have 3, = . Hence setting

Co={Bn | n <w}
we get a cofinal subset of 3. This finishes Special Case 1.
Now assume that s = (v, ¢. Z) # (7, ¢o, 0).
Claim 5:  There is a finite p C L., such that L{3UPp} = L,.
Proof: By condensation (Proposition 2), there are a unique function = and
a unique location s such that m: L,{8Up} = Lz. Then we have Lz = Ls{3Up}

where p = 7"p. As 7 [ B = id, we can conclude that 3N LiBUp} =
BN Ls{3Up} holds for all 3 less than 3. Hence

{B<BIB=pNL{BUP} ={B<B|B=pNLABUp}}
is bounded below 3. Then 5 = s by the < -minimality of s, and so L, =
LA{puUp} =L, O (Claim 5)

Let <* be the canonical wellorder of finite subsets of L derived from <j:
po <* p1 ¢— po # p1 and the <j-maximal element of py A p; belongs to p;.
Choose a <*-minimal p(3) C L. such that p((3) satisfies Claim 5. Since in
particular the old parameter p is generated by 5 U p(3) we have

Claim 6: {3<3|B8=080L{B3Up(B)}} is bounded below 3. Let By < 3

be the maximum of this set.

12



By Claim 6, p((3) satisfies the requirements in Claim 1 and we may denote
p(3) by p without danger of confusion.

We have to examine which locations below s are computed in L,{X}: for
Y C L, we writer = (v,¢.,y) € Y if § € Y. We say that a subset Y of L, is
bounded below s. if there is sy < s such that if < s and r € Y, then r < s.
The <-least such sq is called the <-least upper bound of Y below s. Note
that if in addition Y = L {Z} then we get L {Z} = L, {Z}.

Special Case 2. [ {aUp} is bounded below s for every a < 3.

Define a strictly increasing sequence (8, | n < w) of ordinals less than
recursively: Let Gy be defined as in Claim 6. Given 3,, set

Brrr = [ J(BOLA(Ba + 1) Up}).
By Special Case 2, there is r < s such that

L{(Bn+1)Up} = LA(Bn+ 1) Up}.
The minimality of s implies that 3N L.{(3, + 1) U p} cannot be cofinal in
B, and so B,y is less than 3. Let 3, = J, ., B, Then

B CBNLAB.Up C | BNLAB.+1)Up} C | Bar = 8o

ndw n<w

and since (3, is greater than 3y we have 3, = 3. Hence setting

Cp =1{fn | n <w}
we get a cofinal subset of 3. This finishes Special Case 2.
Now assume that L;{ag U p} is unbounded below s for some ag less than
B. Choose ag = ag(3) least with this property. We would like to use ag to
steer the singularisation of 3 and obtain ordertype(Cjs) < max{ag,w} < 3.
If ag 1s neither a limit ordinal nor zero we have to look for another steering
ordinal. In this case we write ag = aj + 1, and we choose a least ay = a1(f)
less than ag such that

Li{ai UpU{ag}}
is unbounded below s. If a; = a] + 1, then we choose a least ay = ay(3) less
than o such that

L{ozUpU{ap, ai}}
is unbounded below s. Continuing this way we find a natural number k£ =

k() such that a = a(8) = ai() is a limit ordinal or zero.

13



Special Case 3. o =0.

it is unbounded below s. So s has “cofinality w” in the ordering of locations

One easily sees that Ly{pU{ag,..., a)_,}} is a countable set. Since a =0,

and we can find a strictly increasing sequence (s, | n < w) of y-locations
converging towards s. Define a strictly increasing sequence (3, | n < w) of
ordinals less than 3 recursively: Let 3y be defined as in Claim 6. Given (3,
choose (3,11 greater than (3, minimal such that

Brt1 =00N Lsn+1{ﬁn+1 U p}'

Bn+1 exists, since 5,41 < s. Let 3, = Un<w (B,. Then

B = Butr = |J B0 Lopsi {Brrr Up} = B0 Lo{B. U p},

nw n<w

hence the definition of 3y implies 3, = 3. Setting
Cs={0,|n<w}
we get a cofinal subset of 3. This finishes Special Case 3.

So, finally, we arrive at the generic case:

is unbounded below s where a is a limit ordinal less than (3.

Define sequences (5;(3) | t < a) and (s; | 0 < i < a) recursively: Let §y < 3
be defined as in Claim 6. For each 0 < 7 < a let s; be the < -least upper

If 1 < a then 3; < 3 because s; < s; also s, = s, 3, = 3 and
Claim 7: ]f0<i<j<athensigsj and B; < j3;.

Claim 8: {3, |i < a} is closed unbounded in 3.

14



Proof:  lLet @ < a be a limit ordinal. We only have to show that gz =
U,z B: and since Bz > 3; for « < @ it suffices to see that

=60 LodlU__A:UpU a1}

so that | J, 5 B; satisfies the defining property of fz. O (Claim 8)

Cs will now be defined as an endsegment of such 3;’s for which important
elements of the preceding construction are visible below 3; or s;. Let I(3) be
the set of those ordinals ¢ that satisfy the following properties (1) — (5):

(1) 0<i<a,andif [ <k then §8; > ol
(2) s;is a y-location.

(3) 1< pBfori<j<a.

(4) Ifl < kandtisthe <-least upper bound of L,{a)UpU{al,....a}_}}

below s then s; > .

(5) If B <~ then B € L, {08 Up}.
Using the following facts (i) — (iv) the reader can easily show that there
is 79 less than a such that an ordinal : less than o satisfies the conditions
(1) — (5) if and only if 7 > g, i.e., [(3) is a final segment of a.

(i) L{aUpU{ag,....a}_,}} is unbounded below s.

(il) a < pand B ={B3]i < a} where (3; | i < a) is (weakly) increasing.
(iii) Ls{ajUpU{ay,...,a]_;}} is bounded below s for all [ < k..

(iv) If B <~ then g€ L{BUp}=L,.
So set

Co=1{B: |1 € I(B)}.
Then

Claim 9:  Cj is closed unbounded in 3 and ordertype(Cp) < a < f3.

This completes the definition of the system (Cs | 3 singular), and we are
left with proving the coherence property. Fix 3 less than 3 such that 3 is
a limit point of Cs. We have to show that 3 is singular and Cz=0CsnN B.
3 falls under the Generic Case, as ordertype(Cz) > w. Let @ be the least
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ordinal 1 such that 3 = 3,. Then @ is a limit ordinal and # is singular since
cf(fBs) <@ < (5. By condensation there is an isomorphism

m L {BUp} = Ls.

Let ¢ = 7n"p and 7 = a(3s).

Claim 10: 7 [ =1id. Ifsisa B-location then's is a B-location while if
s is a y—location and v > (3 then w(3) = 3.

Proof: Ify > Bthen 3 € L,_{BUp}and 3 = 3N L,_{3Up}. O (Claim 10)
Claim 11: 5= s(j).

Proof: 1y <d < Bthend # BN L, {§UpU{al...a,_,}} and therefore
§#BNLs{6UqU{al...a}_,}}. Tt follows that s(3) <.

Conversely if <35 and § is a finite subset of Loy then 77 (r) < s; and
g C L, {B; U p} for sufficiently large i less than @, since the s;’s are
unbounded below sz, the 3;’s are unbounded in 3 and Lz{3Uq} = Lo As

Bi = BN L AB: Up} we get 3; = BN LAB; UG} for Bi’s cofinal in B and so
r < s(3). Therefore 5<s(3). O (Claim 11)

Claim 12: 3 does nol fall under Special Case 1.
Claim 13: ¢ = p(3).

Proof:  As Ls{B U q} = Ls, we get ¢ >* p(3). Assume q >* p(B). As
p(3) satisfies the requirements in Claim 5 at B, we get ¢ C Ls{B U p(B)},
hence p = 77""q C LABUx'"p(B3)}. So m~'"p(B) <* p = n~'"q and

7~ "p(3) satisfies the requirements in Claim 5, contrary to the minimal

choice of p = p(#). O (Claim 13)

Now L,_{aUp} = L{@ U p} is unbounded below sz. Hence Lz{@a U ¢} is
unbounded below 5, and @ < 3. Hence

Claim 14: 3 does nol fall under Special Case 2.

Claim 15:  Ifj < k then a;(B) = a;(5).
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Proof: By induction on j < k.
By definition, a;(3) is the smallest v s.t. L{vUpU{a’|i < j}}is unbounded
below s. Now L,{aUpU{ay,..., o), }}is unbounded below sz, so Le{@aUqU

{ag, ..., a}_y}} is unbounded below 5. Hence Lz{a;(3)UqU{ag,.... o} }}
is unbounded below 5, as aU{a’;...a};_; } C a;(8). Conversely, the definition
of I(3) implies that L.{a;UpU{ag.,..., a’_;}} is bounded below s by some

s' < sg, hence by some location in L,_{3Up}. So Ls{aUqU{ag, ..., o) }}

is bounded below s by some location less than 5. So «a;(8) = «;(5). O
(Claim 15)

Claim 16: ax(3) =a.

Proof: ~ The set Ls{a UqU {aj,.... af_,}} is unbounded below 5. If we

take o' less than @, then L,_{a’ UpU {gg ..... af_,}} is bounded below sz,

by the minimality of @. So we have a;(3) =a. O (Claim 16)

Claim 17: [ does not fall under Special Case 3,
since @ # 0. So we are again in the Generic Case.

Claim 18: [Ifi <@ then 3:(B) = B:(3).

Proof: By definition, 8y = (o(3) is the largest § less than 3 such that
6 = BN LA5Up}. From the definition of 3 = Bz we infer that 3, is the
largest d less than 3 such that 6 = 3N L, {6 U p}. As L, {BUp} = Ls{BUq}
by a map which is the identity on 3, we see that [ is the largest ¢ less than
(3 such that 6 = N Lz{d U ¢}, which is the definition of Gy(3).
Now consider 0 < ¢ < @. Then

5;(3) is the < -least upper bound of L,{i UpU {af,...,a} ,}} below s.
By the definition of s5z we get that

5;(3)is the < -least upper bound of L,_{z Up U {ay, ..., aj_y 1} below s.

Moreover,

5:(B) is the < -least upper bound of Lg{i UqU {a,..., ajy_;}} below .
Now (3;(3) is the minimal ordinal greater than 3y such that
Bi(B) = BN LAB(B)UpU{ag, ..., 0k, }}
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for all s’ < s5(B) with s € L,_{iUpU{a} ...a,_,}}, and B:(3) is the minimal
ordinal greater than 3y such that

Bi(B) = BN Le{B:(B) U qU{ag, . ... af_ }}
for all 3’_25 with 5" ¢ Ls{i U qU{ag...aj_}}. By the above and the fact
that m [ 8 =id we have §;(3) = 3:(8) as required. O (Claim 18)

Now one easily checks that each ordinal ¢ less than @ satisfies the defining
properties of I(3) (cf. (1) — (5) above) if and only if it satisfies the corre-

sponding defining properties of 1(3). So we get I(3) = I(#) N @, and this
immediately implies the coherence property. [
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