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Fine Structure Theory and Its Applications

SY D. FRIEDMAN

LECTURE 1. INTRODUCTION, THE DIAMOND PRINCIPLE

The fine structure of L is an exciting theory due almost entirely to the efforts of
Ronald Jensen. By developing a thorough analysis of definability in L, he
established combinatorial principles which can be used to solve many important
problems in set theory, under the hypothesis V' = L.

These lectures constitute an introduction to this work from a recursion-theorist’s
point of view. This is not wholly inappropriate, for a recursion-theoretic spirit is
prevalent throughout the fine structure theory. The essential intuition is to view
2,-definability as a generalized form of recursive enumerability, an idea which
has also been key to the development of higher recursion theory.

Thus a recursion-theoretic idea has been of importance in a set-theoretic
context. In recent years there has been a significant flow in the opposite direction
as well. It is our purpose in these lectures to describe the main techniques of the
fine structure theory and to describe how these techniques have been applied to
recursion theory.

The starting point for any discussion of the fine structure of L must be the
Gaodel Collapse Lemma. The uniformity of the L-hierarchy which is illustrated by
this lemma is of fundamental importance.

We assume basic familiarity with Godel’s L-hierarchy (L |a € ORD). Now
fix a limit ordinal A and suppose that a € L,, X C L,. We say that a is definable
in L, with parameters from X if for some formula in set theory ¢(v) with
parameters from X, L, & “ais the unique solution to ¢(v)”. We writea € H,( X)
in this case.
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An alternative description of H,(X) can be provided using Skolem functions.
For each formula ¢(x, x,.....x,) let f, be defined on

n times

L?\X ..'XL)\

by f(xy,....X,) = <, -least x € L, such that L, = ¢(x, x,...,x,) if such an x
exists; = 0 otherwise. Then H,( X) = closure of X under the f,’s. It follows that

(Hy, €) <Ly, ¢).

GODEL COLLAPSE LEMMA. For all X C L,, (H,\( X, e) is isomorphic to (Lﬂ, e>
for some unique B < \. If t € H\(X) is transitive then the isomorphism is the
identity on t.

By the Mostowski Isomorphism Theorem we know that <H \(X), &) is isomor-
phic to (T, ¢) for some transitive 7. Godel absoluteness shows that there is a
sentence ¢ of set theory such that for transitive T, (T, &) & ¢ iff T = Lg for some
B. This proves the first statement of the Godel Collapse Lemma. The second
statement follows from the fact that any isomorphism of transitive sets is the
identity.

The original use of the Goédel Collapse Lemma was to establish the Generalized
Continuum Hypothesis (GCH) in L. It is worthwhile to review that argument as it
is the model for much of what comes later.

THEOREM (GODEL). Assume V = L and suppose « is an infinite cardinal, y < k.
IfACythenA € L,_,.

PrOOF OF THEOREM. Pick a limit A so that 4 € L,. Then by the Collapse
Lemma, m: H,(y U {A4)}) = L; for some =, B and w1 y=id[ y. (We are
dropping the e-relation from our structures to save writing.) But then 7(A4) = 4
so A € Lg. As card(H,(y U {4})) < x we have card(Lg) = card(B) < k so
B<kt.SoAdelL . QED.

Thus we see that the Godel Collapse Lemma enforces a restriction on the
possible subsets of an infinite cardinal k, the GCH being a consequence of this
restriction. By taking a closer look at this technique we can uncover a deeper type
of restriction, which is embodied in Jensen’s Diamond Principle. This type of
restriction is most easily described by making use of the notion of “cutoff”
function.

DEFINITION. Suppose V' = L, k an infinite cardinal and 4 C k™. Define f:
k" — k (the cutoff function of 4) by

f,(y) = L-rank(4 N y) = least8(A4 Ny € L;).

Note that by the previous Theorem, f,(y) < k™ for all y < k¥, C C k" is closed
unbounded (CUB) if supC = k*, and for all y < k™, sup(C N y) € C.

THEOREM (JENSEN). Assume V = L. There is a fixed f*: k" — « ™ such that for all
A C k", f* dominates f, on a CUB set; i.e., {y|f*(y) = f4(y)} contains a CUB set
foreach A C k™. '
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Note. Of course, the CUB set depends on A!

PROOF. f*(y) = least y'(L,. & card(y) < k). Now suppose that 4 C x* and
pick a limit A, 4 € L,. For any y between x and x* we may form H,(y U {4})
= H(v).

Claim. H(y) N k"= an ordinal vy,,.

PrOOF OF CraimM. We have to show that if § € H(y) N k" then § C H(y). As
H(y) =< L, we have g: k <> 8, g € H(y). As k € H(y) it follows that g[x] = 8 C
H(y). Q.E.D. (of Claim)

The reason why the ordinals y, are useful is that f*(y,) > f,(v,): Indeed we
have 7: H(y) = Ly where w | §, = id | y,. So m(4) = {(7(8)d <y, =40y,
€ Lg. Thus f,(y,) < B, by definition of f,. But B < f*(v,) as v, = m(k™) =
(k).

To complete the proof we need only check that D = {y,|x < y < k"} contains
a CUB set. In fact D is CUB: Clearly D is unbounded in k™. Suppose & is a
limit of elements of D, 8 < k™. Then 8, = sup, ;Y4 = sup,, <5(74) 4 But as
Hy(y U {A)) = Hy(v, Y {A)) for all y, we have (v,), = v4. S0 8, = sup, -5 V4
=8andd € D. QED.

We can now convert what we have into a tidy combinatorial principle:

O There exists < D |y < u+> such that:

(a) Foreach A < k™, D, € 2(y), card(D,) < k.
(b) Forany A € k", {y|4 Ny € D,} contains a CUB set.

. is obtained by letting D, = 2(y) N Ly

The {_.-principle is a variant of the above: Say that X C k™ is stationary if
XN C+# @ whenever C C k' is CUB. Then .. is obtained from {Y by
replacing “card(D,) < k™ by “card(D,) = 1" and “CUB” by “stationary”. A
lemma of Kunen shows that X — O, (in ZFC). (In fact, .- is equivalent to
O+, where only the second of the above two changes is made.) A stronger
principle, .5 also requires that the CUB set in (b) have the property y € C — C
Ny € D,. Our proof of O, in fact, demonstrates O.- as well. There are also
versions of these principles for inaccessible cardinals. (In the case of O, O, one
must require card(D,) < card(y) for y < k.) As it turns out, if ¥V = L then {,
holds for all regular &, but X, O, hold exactly for those k which are regular but
not ineffable (see Kunen [5]).

The major application of { (= {, ) in set theory is to the construction of a
Souslin tree in L. For this we refer the reader to Devlin [3]. In recursion theory an
effectivized version of {* has been used in a-recursion theory. We conclude this
lecture by sketching this latter application.

Given any notion of RE-ness a standard question to consider is Post’s Prob-
lem: Do there exist RE sets of incomparable degree? Often the priority method is
used. The typical set-up is that one wishes to recursively enumerate sets 4, B so as
to satisfy requirements R, R,,..., which are designed to guarantee that 4, B are
of incomparable degree. One hopes that each proper initial segment of require-
ments is permanently satisfied beyond some stage in the construction. In general,
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the ordering of stages may have ordertype a greater than the length p of the
listing of requirements. If cofinality(a) > p then the above hope is fulfilled.

If cofinality(e) < p then what is needed is a method by which requirement R,
can “guess” at the activity of the higher proprity requirements ( R|j< i). In
case p = w, this “guess” can be provided by a {)*-sequence < D |y e wl). so that
R, uses D, to lay out countably many possibilities. Fodor’s Theorem is also
relevant as the function (i — least; s.t. R, injures R,) is regressive.

It is worthwhile to point out that in the recursion-theoretic setting {>*, and not
{, is the appropriate principle to adapt. It is typical of fine structure applications
to recursion theory that combinatorial principles cannot be applied directly, but
must be tailor-made for the problem at hand.

LECTURE 2. THE BOX PRINCIPLE AND MASTER CODES

The full flavor of the fine structure theory becomes first apparent through
consideration of Jensen’s Box Principle (O). It is here as well that a recursion-
theoretic intuition begins to play an important role.

If A is a limit ordinal of cardinality x < A, then there exists a closed unbounded
(CUB) set C, € A of ordertype at most x. Such a subset of A is called a
cofinalization of A. The Box Principle asserts that such C,’s can be chosen so as to
cohere nicely for many different A. For any C € ORD, Lim(C) denotes the set of
ordinals which are limits of elements of C.

O(x): There exists a sequence (C,i]x e U h’rm’t) such that for all A

(a)C, is a closed unbounded subset of A of ordertype < «,

(b) A’ € Lim(C,) —» Cy, = C, N X"
Note that we do not have perfect coherence: N’ € C, — Cy N A\’ = C,.. Perfect
coherence contradicts (a) as it implies that C,. is bounded in A’ when A’ is a
successor element of C,. However, perfect coherence can be required if one will
allow C, to be bounded in A when cofinality(A) = w.

We now proceed to describe the main points of Jensen’s proof of O(k) in L. It
is convenient to work with a slightly modified version of O(x), which we call
O'(k). Assume V=L and let S = {Alxk <A <«k*, A limit and L, = k is the
largest cardinal}.

O'(k): There exists a sequence (C,|]A € §) s.t. forallA € S

(a) C, is a closed unbounded subset of A of ordertype < &,

(b) A" € Lim(Cy) » A" € Sand Cy, = C, N \".
Thus essentially we have here a O(k)-sequence based on the ordinals in S only.
Using the fact that S is a CUB subset of k7, it is not difficult to derive O(k) from
O'(x) in L.

Thus we will actually describe a proof of O'(x). The proof will make use of a
refinement of the Skolem hull operation H,( X) from the preceding lecture. For
any limit ordinal A, X C L, and n € w, let H{!( X) consist of all y € L, which are
2, -definable in L, with parameters from X. Thus H,(X) = U, H}( X).
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Now let » € §; we wish to locate a “canonical” cofinalization C, of ». To do so
first consider B(») = least B s.t. some cofinalization of » is L,-definable. A more
useful characterization of B(») is B(») = least B s.t. there is an Lg-definable
function from a subset of k cofinally into ». Also, let n(») = least n s.t. some
function from a subset of x cofinally into » is Z, over Lg,,. In all fine structure
arguments the pair (B(»), n(»)) plays a fundamental role in determining what
happens at ».

It is worthwhile to first consider the case B(v) = », n(») = 1. In this situation
we can provide a natural recursion-theoretic definition of C. The key idea is to
define what it means for a X, sentence ¢ with parameters from L, to be rrue at
stage o, where o < ». This holds if the parameters in ¢ belong to L_ and L, &= ¢.
The essential feature of Z, statements is their persistence: o, < 0, < », ¢ true at
o, — ¢ true at o,.

We are given the existence of a =,(L,) function g from a subset of x cofinally
into ». We can pick a parameter p € L, so that some Z, formula with parameter p
defines g over L,. Thus for any y, & the statement “g(y)= 48" is Z, with
parameters vy, 8, p and, therefore, we have assigned meaning to the assertion:
g(y) =4 is true at stage o. A natural cofinalization of » can be described as
follows:

vo=10, ¥,=leasty € Dom(g)s.t.g(y)>0, 8, =g(y,).
Fori> 0

v, = least stage 0(“3’(}(}.) = §,” is true at stage o for all j < :'),

Y, = leasty € Dom(g) s.t. g(y) > »,,

61’ = 3(7;')'
Note that the sequence », < », < --- is continuous and increasing. The sequence
Yo <Y, < --- is increasing. If v, is defined, so is y, and therefore so is »,, ;. Thus

i, = least i so that », is not defined is a limit ordinal < k and the sequence
(vi <i,) is cofinal in ». Most importantly, if A is a limit ordinal less than i,
then the sequences (»,|i <A), (v,]i <A) have the same definition over L, as
they do in L,. This is precisely the type of coherence property that we are looking
for.

It is tempting to define C, to be {»,|i < i, }. The only difficulty is that what we
have done depends on our choice of g. A final step (which will not be provided
here) is required to make a canonical choice for g. The idea for doing this is to
construe H!(k U { p}) as the range of some =,(L,) function with domain
contained in k, for the least p such that H!(x U { p}) is unbounded in ».

This completes the definition of C, in the case » = B(v), n(r) = 1. When
B(v) > », n(v) = 1, a natural modification of the above argument can be used to
define C,. The main point is that the phrase “¢ is true at stage o™ when ¢ is 2,
makes equally good sense for Ly, as it did earlier for L,.

But what if n(») > 1? We have now come to a crucial point in our discussion of
the fine structure theory. The natural interpretation of X, predicates as being
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enumerated in stages appears to break down when 2, is replaced by Z,. n > 1.
The essential problem is the lack of persistence: for n > 1 a Z, sentence true inL,
need not be true in L, for all 6’ > o. The notion of 2, ; Master Code is designed
to deal with this difficulty. Using it, Jensen showed that a 2, property can often
be viewed as a property which is =, “relative” to a =, _,-definable predicate. It is
then possible to extend our earlier recursion-theoretic interpretation from %, to
=,, n > 1, thereby providing the missing ingredient needed to complete the proof
of O'(k).

We should explain what is meant by “relativization”. Fix an ordinal 8 and let
A € Lg. A formula is 3¢ if it is obtained from a =, formula by replacing some
free variable by 4. Now B C L, is =, relative to A if B is definable over the
structure (Lﬂ[A], e, A) by a Z{ formula. The most manageable situation is
where Ly[A4] = Lj, in which case we say that ( Lg, A) is amenable.

Fix n = m + 1 > 1 with a view toward obtaining a = ,(Lg)-definable 4 C L,
such that (a) any B € L, which is 2, (Lg) is 2, relative to A, and conversely,
(b) any B € L, which is 2, relative to 4 is 2, ,(Lg). Property (a) is easy to
arrange (at least for limit B): choose 4 to be any universal 2, predicate for Lg.
However, (b) is much more difficult to obtain. it would help to at least choose 4
so that (Lﬂ, A) is amenable. Then it can be shown that (b) reduces to: If
B={x€Lyxc A}thenBisZ, (L) Even thisisa problem unless we know
that < Ly, A§ is amenable for all Z, (Lg) sets A, a property which fails for many
B.

Jensen deals with this problem by working not with B itself but with its “2
projectum”. This is defined to be p/ = least p s.t. there is a 2, (Lg) injection
from B into p. We now work with 2 (Lg) subsets of pf = p instead of 2,(Lg)
subsets of B. Thus we want A C L, such that (a") any B C L, whichis 2, . (L)
is 3, relative to 4 and (b’) any B C L, which is Z, relativeto A is 2, , ,(Lp)-

A subset of L s obeying (a’), (b') is called a =, Master Code for B. Jensen’s
fundamental Uniformization Theorem implies that ( L A) is amenable for all
2, (Lg)4 < L consequently, our earlier obstacles to demonstrating (b) have
vanished and thus (b’) can be proved. To obtain (a’) let g be a =, (L) injection
from Ly into p and define 4 to be the range of g on a universal 2 predicate for
Lg. Thus a 2, Master Code for B exists.

Now let us return to our proof of [(x) and reconsider the case n(v) = m + 1
> 1. Thus, by definition, there is a =,,,,(Lg,,,) function g from a subset of «
cofinally into ». Now view g instead as a function which is 2, relative to some 5
Master Code A for B(»). (This is possible as the leastness of n(») implies that
v < pP™ and, therefore, property (a’) applies with B = Graph(g).) It is now
possible to define C, recursion-theoretically as before, this time over the structure
A(v) = <Lpff:.’—n’ A). The only new point is that 4 must in fact be a canonical 2,
Master Code for B(») to guarantee the coherence property of O'(x). The structure
&7 (v), when 4 is chosen to be the canonical 2, ,, , Master Code for B(»), plays a
major role in all fine structure arguments. -
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Lastly, the theory of Master Codes has had an impact on recursion theory.
Assume V = L and let x be a cardinal. If x < 8 <«* and p/ =k, then the
canonical =, Master Code for B is a subset of k. The x-degrees of these Master
Codes are well ordered just as these Master Codes themelves are well ordered by
< ,. In this way one obtains a k-jump hierarchy 0 < 0" < 0” < --- cofinal in the
k-degrees. When k = , Jockusch and Simpson [6] and Hodes [7] have shown that
the Turing degree 0* can often be degree-theoretically characterized in terms of
{0%a < A}. In case k = 8, we have the following Master Code Theorem: Every
k-degree > O’ is of the form 0° for some a. This result is useful in the study of
uncountable admissible ordinals.

LECTURE 3. STRONG CODING

In this lecture we apply fine structure theory to the study of the Admissibility
Spectrum.

An ordinal & > w is admissible if L, is a model of the =,-Replacement scheme,
obtained from the usual Replacement scheme by restricting it to 2, formulas. For
any A C ORD, a is A-admissible or admissible relative to A if ( L [A]l,e, AN a)
obeys Z{-Replacement. (Note that if 4 is a bounded subset of a, then this
reduces to L_(4) is a model of Z,-Replacement.) The Admissibility Spectrum of A4
is the class of all A-admissible ordinals, denoted by A(A4). We also introduce the
notation A(@) = A and a(A4) = min(A(A)).

Observations. (1) a(2) = wSk, the least nonrecursive ordinal. The notion of
admissible ordinal arose from the generalization of recursion theory on o5¥,
metarecursion theory, to recursion theory on a, a-recursion theory.

(2) If A € L,, a admissible, then a is 4-admissible. The converse is false even
for constructible subsets of w; indeed, Sacks showed that { R C w|a(R) = «f*
has measure 1 in Cantor Space (provably in ZF).

(3) If a is admissible, Z € L, is a partial-ordering and G is P-generic over L,,
then « is G-admissible.

The Admissibility Spectrum Problem is that of determining which Admissibil-
ity Spectra can occur. We shall focus here on the Admissibility Spectra of subsets
of w, or reals. This was studied by Sacks and by Jensen who showed:

(Sacks) Any countable admissible ordinal > w is a(R) for some real R.

(Jensen) Suppose @ < ay < a@; < --- is a countable sequence of countable
admissibles and for each i, a, is admissible relative to {a,|j < i}. Then for some
real R, { a,, ;,...} is an initial segment of A(R).

Note that by (2), if R € L then A(R) must agree with A beyond some
L-countable ordinal. Moreoever, (3) implies that if R belongs to a set-generic
extension of L then A(R) agrees with A beyond some ordinal.
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Are other Admissibility Spectra possible? Yes, for A(0#) is contained in the
L-cardinals. But are large cardinals necessary? This led Solovay to pose the
following:

Solovay’s Question. Is it consistent that for some real R, A(R)= RI = The
Recursively Inaccessible Ordinals? (« is recursively inaccessible if « is admissible
and the limit of admissible ordinals.)

The theorem that we wish to discuss is

THEOREM. Con ZF — Con(ZF + 3R C w(A(R) = R)). Specifically there is a
class-generic extension N of the minimal model of ZF and a real R € N s.t.
N = A(R) = RL

The proof of this theorem is based on a refinement of the technique of Jensen
Coding which we call “Strong Coding”. It is worthwhile to first consider the
following weakened version of the Jensen Coding Theorem, in order to illustrate
Jensen’s technique.

THEOREM (JENSEN). Suppose A € ORD and A N a € L for all o({L, A) is
amenable). Then there is a class-generic extension M of L s.t. M = ZF and for
some real R € M: M = L(R), A is definable over L(R).

We will now give a very rough description of Jensen's proof. First consider the
simpler problem of “coding” a subset of w, by a real: Thus let B C ;. We wish
to devise a forcing notion Z7 s.t. if G is #f-generic then for some real R:
V[G] = V[R], B is definable in V'[R] from the parameter R. This can be done
with “almost disjoint forcing”, a method due to Solovay. We assume V = L.
Using this hypothesis we can choose a “canonical” method of assigning a real r;
to each countable ordinal £ so that if £,,...,£, are distinct then e, is almost
disjoint from re, U ---uUr, (a, b € w are almost disjoint if a N b is finite). Then
our forcing Z¢F is defined so as to produce a generic real R s.t. £ € B < R is
almost disjoint from .. In this way R “codes” B. More specifically: A condition
p € R, is a pair (s, 5) where s is a finite subset of and § is a finite subset of
(r|¢ € B}. And, (1, 1) extends (s5,5§) if 25, 1 2§, all elements of ¢ — 5 are
greater than max(s) and (t — s) N r; = @ for r, € §. It is easy to check that if G
is Z-generic then R, = U(s|(s, §) € G} has the desired property. Moreover, RE
has the countable chain condition.

The idea for proving Jensen’s Theorem is to reason as follows: The forcing
R provides us with a “canonical procedure™ for coding 4 N w, by a real. By
generalizing almost disjoint forcing one cardinal higher, we can similarly code
A N w, by a subset of w,, using an analogous forcing Z;'"“:. But then by
combining these two forcings we have a method for coding 4 N w, into a real.
Jensen coding allows one to “iterate” this procedure through all the cardinals so
as to code A by a real; an appropriate modification of almost disjoint forcing is
needed at limit cardinals. The fine structure theory (>, 0, gap-1 morass) is needed
for the proof. _
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Now the above ideas suggest the following approach to Solovay’s problem
(A(R) =RI):

(1) Find A € ORD such that ( L, 4) is amenable and A(A4) = RI.

(2) Code A4 by a real R in such a way that A(R) = A(A).

(1) is easy to arrange by choosing canonical cofinalizations of each successor
admissible and then putting them together into a single predicate 4 (in fact, 4 is
A,-definable). The problem is with (2). What we want to arrange is

(2a) A N ais A, over L (R) for every admissible a,

(2b) a A-admissible - a R-admissible.

The property (2a) guarantees that A(R) € A(A) and (2b) states that A(A4) C
A(R). Intuitively, (2a) states that the “decoding” of 4 from R is so efficient that
it can be carried out inside L ( R) for every admissible a.

Unfortunately the Jensen Coding method does not provide this. For, to
determine whether or not £ belongs to 4 N w,, we must first determine the
“code” r, and then ask if R is almost disjoint from r,. However, not every
countable admissible @ will be closed under the operation £ ~ r,, as in general, 7,
will not appear in L until a level much greater than £. In fact, the best that can be
done is to obtain r; inside L#‘ where p, = least 8 s.t. Ly = £ is countable. As a
result the best that we can appear to obtain is: If a is a countable admissible then
A N (w;)E=is A, over L (R).

However, the following trick enables us to get around this problem and thereby
establish (2a): Note that we would have what we want if A N a were A, over
L [A N (w,)*]. The idea now is to apply the coding technique not to 4 but to a
predicate A” which has the preceding property and is such that 4 is simply coded
into A" (say A = even part of 4’). Then 4, and hence A, can be “decoded” from
the generic real R at every admissible ordinal. In actual fact, the predicate A" must
be built generically and “simultaneously” with the generic real coding it. (The
assumption that 4 is 2, is needed here.) In this way we get (2a) and hence the
partial result

(%) Con ZF — Con(ZF + 3R(A(R) C RI)).

This result was obtained independently by René David [10] who also showed
using a similar approach that RI can be replaced in (*) by any Z, class of
admissibles X O L-cardinals.

Notice however that by passing from 4 to A" we may have destroyed the
admissibility of some of the 4-admissible ordinals. In other words, A(A4") may be
a proper subset of A(A). The purpose of the Strong Coding method is to remove
this defect. Once again we need to “improve” 4 to a predicate 4" with the
property that for any admissible a of cardinality k < a: A" N a is A, over
LA’ N0 (x*)"=]. But now we want to also guarantee that the admissibility of any
A-admissible ordinal is preserved by 4"

Note that the problem we are dealing with can itself be viewed as a “coding”
problem: in this case we want to build 4’ N (k)%= so as to code (at least) 4 N a.
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This suggests the solution: We should make 4’ N (k")% itself generic for a
Jensen-style coding of the “universe” (L [A], e, 4 N ) by a subset of (k)%=
Thus the desired forcing for coding the predicate 4 by a real should be
constructed from conditions which are themselves generic solutions of the prob-
lem of coding initial segments 4 N a of 4.

More explicitly, let Adm = { 8|8 is admissible or the limit of admissibles} and
for B € Adm, B-Card = {k|k = 0 or k is an infinite B-cardinal}. Let 0= w. For
each B € Adm, k € B-Card, a forcing 2” is defined so as to produce a subset of
(k*)L# which codes 4 N B. A condition p € @f is typically a function on an
initial segment of (B-Card) — x which assigns a pair p(8) = ( ps, ps) to each
8 € Dom(p). The pair ( ps, Ps) is a condition in the forcing #7%* for coding
A N 8", ps. into a subset of 8" (8 denotes (8 *)*#). There are also requirements
at limit B-cardinals as well which will not be discussed here. Finally, the set
Ps N (8% must be a Pg-generic coding of p; N a, for every admissible a
between 8 and sup( p;).

Thus our conditions are much like those used in Jensen Coding, but with the
added restriction that the “coding elements” p; be themselves generic for (strong)
codings at smaller ordinals. This restriction complicates the proofs of the basic
lemmas from Jensen’s argument: in particular, more fine structure is needed.
There are two principal difficulties to handle, which we now describe.

The first is raised by the question: Do nontrivial conditions exist? To provide a
positive answer one must build generic sets in L for forcings 2 where « is
uncountable, card(8) = . If we knew that both L, and 2P were < k-closed, then
this would of course be easily done, but this is not generally the case. However,
2P can be shown to be k-distributive in Lg; thus one could hope to get a
PP-generic set by decomposing L, into pieces (B,i < i), iy <« and then
defining a sequence of conditions p, > p, > --- where p, meets all dense sets in
B,, each B, € Ly having cardinality < k. This approach works, provided the
above type of decomposition can be obtained. It cannot in general, but instead a
series of decompositions can be used, as defined by the critical projecta of B.

For any limit ordinal » & Card, define B(») = least B s.t. there is an Ly
definable f: » —!"'»’, some »* < ». Also, n(») = least n s.t. such an fis 2, (Lg,,),
p(v) = (Z,,,-projectum of B(v)) < v and p'(») = £, ,,_,-projectum (B(v)) > ».
Define the sequence p, = p, = »; p;x1 = p(p;), pix; =P'(p;);.... The p,’s are
descending so for some least k(v), p,,, = card(»). The principal projecta of v are
the p,’s, the auxiliary projecta of v are the p’s and the critical projecta of v are
both. Thus we are describing the way in which » becomes collapsed in L. For the
sake of the present discussion, we deal only with the principal projecta.

Suppose now that k = card(8) and we wish to obtain a 2#-generic set G. Let
B=p,>p, > -+ > p, = k be the principal projecta of 8. G is constructed in k
steps: First build a 2-generic set G, then a 2 -generic G,,..., a £ I-generic
G,. Here, Qap?--' denotes a forcing designed to strongly code 4 N p,", G,_, by a
subset of p,". The desired G is obtained by “glueing together” the G,’s: p € G iff
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p ! (Dom( p) = p;) € G,. Our success in obtaining G, is based on the fact that L,
can be decomposed into an i-dimensional array of size < p,, consisting of
elements of L of size < p,. This array is constructed using O(p,),0(p5),. ...0(p;).

The second difficulty is that the usual type of almost disjoint forcing does not
mix well with the genericity restriction that we have placed on the p;’s. Specifi-
cally, suppose ( ps, Ps) is a condition for coding 4 N 8", p,, into a subset of §°
and we wish to extend ( ps, ps) to a condition (g;, g5), sup(gs) = «. We may
assume that a > sup( ps) is admissible. Our restriction says that g; must be
generic for ¢, yet the almost disjoint forcing also requires gz — p; is disjoint
from U{r,|r, € p;}. We must justify the compatibility of these two requirements.
Doing this requires that the restrictions of the codes {r; N (8%)"|r, € p;) be
generic for some forcing defined over L ..

Thus the r,’s must be chosen so that 7, N a is “generic” for every admissible
a < 8%, Cohen genericity cannot be used as if r, were Cohen generic then
r; N [ay, @,] = @ for many large intervals [a;, @,] below 87, and thus r, N a,
could not be generic. Instead both the 7,’s and the forcings for which the r,’s are
generic must be defined by induction on a gap-1 morass at § *. 0(9) is needed to
get through limit stages of this induction.

This completes our outline of the Strong Coding technique. It is our hope that
these lectures have helped to suggest a fruitful interplay between recursion theory
and ideas in the fine structure of L.
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