Descriptive Set Theory on Generalised Baire Space

Joint work with Khomskii-Kulikov (first part) and with
Hyttinen-Kulikov (second part)

We assume k = k<F.

k-Baire space = k" consists of all f : Kk — k, with basic open sets
given by
{f:k—=>K|sCf}

where s € K<F.

Nowhere dense = Closure has no interior
Meager = union of xk-many nowhere dense sets

Baire measurable = differs from an open set by a meager set

The Baire Category theorem holds (the intersection of k-many
open dense sets is dense)



Regularity Properties

Baire measurability is just one example of a regularity property.

A forcing P is k-treelike iff it is a k-closed suborder of the set of
subtrees of k<*, ordered by inclusion.

Some examples of k-treelike forcings:

r-Cohen C,. These are subtrees of 2<% consisting of a stem and all
nodes above it.

k-Sacks Sy. These are k-closed subtrees of 2<% with the property
that every node has a splitting extension and the limit of splitting
nodes is a splitting node.

k-Silver V., for inaccessible k. These are x-Sacks trees T which

are uniform, i.e. if s, t are elements of T of the same length then
sxiisin T iff txjisin T fori=0,1.



Regularity Properties

rk-Miller M,,. These are x-closed subtrees of the tree m?’* of
increasing sequences in k<" with the property that every node can
be extended to a club-splitting node and the limit of club-splitting
nodes is club-splitting. We also require continuous club-splitting,
which means that if s is a limit of club-spltting nodes then the club
witnessing club-splitting for s is the intersection of the clubs
witnessing club-splitting for the club-splitting proper initial
segments of s.

k-Laver L. These are k-Miller trees with the property that every
node beyond some fixed node (the stem) is club-splitting.

k-Mathias R,,. Conditions are pairs (s, C) where s is a bounded
subset of k and C is a club in k. (¢, D) < (s, C) iff t end-extends s,
D C Cand t\s C C. This is equivalent to a x-treelike forcing.



Regularity Properties

The 6 examples above fall into two groups:

Cy, L, and Ry are topological: The [T] for T € P form the base
for a topology (either [S|N[T] is empty or contains some [U]).
They are kT -cc.

Sk, M, and V,; are not x"-cc but they satisfy a form of fusion
(called Axiom A*), sufficient to show that k™ is preserved.

Remark. There is no obvious k-analogue of Solovay forcing
(random real forcing). However:

Theorem

(SDF-Laguzzi) If V = L and & is inaccessible then there is a Al
k-treelike forcing B,, which is k™ -cc and k"-bounding.



Regularity Properties

To define “P-measurability” for x-treelike forcings P we proceed as
follows.

A set Ais:

Strictly P-null if every tree T € P has a subtree in P, none of
whose k-branches belongs to A.

P-null (or P-meager) if it is the union of k-many strictly P-null
sets.

‘P-measurable (or P-regular) if any tree T € P has a subtree

S € P such that either all k-branches through S, with a P-null set
of exceptions, belong to A or all x-branches through S, with a
P-null set of exceptions, belong to the complement of A.



Regularity Properties

Proposition

(a) If P is topological then:

(al) A set is P-measurable iff it differs from a P-open set by a
P-null set. (So C,.-measurable is the same as Baire-measurable.)
(a2) Not every P-null set is strictly P-null.

(a3) Borel sets are P-measurable.

(b) If P satisfies fusion (Axiom A*) then:

(b1) Every P-null set is strictly P-null.

(b2) Borel sets are P-measurable.

Question. As in the case k = w, are all £} sets P-measurable?

Answer: NO!



Regularity Properties

Fact. The club filter = {f : K — 2| f(i) = 1 for club-many i < x}
is not x-Sacks (S,) measurable.

Proof. Otherwise there is a k-Sacks tree T such that either for all
fe[T], f(i) =1 for club-many i < k or for all f € [T], f(i)=0
for stationary-many i < k.

But we can easily build fy, f; in [T] such that whenever f|i splits in
T, f(i) = 0 and whenever f|i splitsin T, f(i) = 1.
And the set of / where fy|i splits forms a club (same for f;).

So [T] has an element fy which is not in the club filter and an
element f; which is. O



Regularity Properties

Now we can apply the following result to conclude that 1 sets
need not be P-measurable for any of our 6 examples. For a
pointclass I', let () denote that sets in I are P-measurable.

Theorem

(a) T(Cx) = (V) — I(Sk).
(b) T(Cy) — M(My) — I'(Sk)-
(c) T(Ry) — M(My).

(d) T(Lx) — T(Ms).

In particular ['(Sy) is the weakest of them all, so as it fails for
I = Y1 so do all the others.

Question. What about Al (# Borel for k > w)?



Regularity Properties

Theorem

It is consistent to have A}(P) for P = Cy, L, and R,
simultaneously.

This is proved by interleaving iterations with < k-support of these
three forcings for k™ steps.

Note that in the above model we also have Al(P) for P = M,, V,
and S, by the previous slide.

Question. But can we separate A}(P) for different P?

This looks hard. But we have one result about it;



Regularity Properties

Theorem

There is a model where & is inaccessible and A}(V,) holds but
A}(M,,) fails.

This is proved by iterating V,, for k™ steps over L, where & is
inaccessible; Al(V,) holds in the resulting model.

The main lemma is that A}(M,,) yields functions from & to x that
are unbounded over L[f], for any given f : k — K.

As the iteration is k"-bounding and therefore does not add
functions which are unbounded over the ground model, we conclude
that A}(M,,) fails.

It follows from our earlier implications between regularity properties
that in the above model, Al(C,), Al(R,) and A(L,) all fail, but
A}(Sk) holds.



Regularity Properties

The main difficulty with separating Al regularity properties is the
lack of “Solovay-type characterisations”.
In the classical setting we have:

(Solovay) T3 sets are Baire-measurable iff for every real x there is a
comeager set of reals Cohen over L[x].

(Shelah) A} sets are Baire-measruable iff for every real x there is a
Cohen real over L[x].

In fact, Shelah's result provably fails for uncountable «:

Theorem

(SDF-Wu-Zdomskyy) Suppose that k is regular and uncountable in
L. Then in a cofinality-preserving forcing extension, for every x C k
there is a k-Cohen over L[x] but the CUB filter on k is A}l. In
particular not all Al sets are Baire-measurable.



Borel Reducibility

If E and F are equivalence relations on " then we say that E is
Borel reducible to F, written E <g F, if there is a Borel function f
such that for all x, y: E(x,y) iff F(f(x),f(y)). The relation <g is
reflexive and transtive and we write =g for the equivalence relation
it induces.



Borel Reducibility: Dichotomies

In the classical setting one has two important Dichotomies:

Silver Dichotomy. Suppose that E is a Borel equivalence relation on
w® with uncountably many classes. Then equality is Borel (even
continuously) reducible to E.

Harrington-Kechris-Louveau Dichotomy. Suppose that E is a Borel
equivalence relation. Then either E is Borel reducible to equality or
Ey is Borel reducible to E, where Ey is the equivalence relation of

equality mod finite.

In generalised Baire space, the Silver Dichotomy fails in L but
consistently holds (after collapsing a Silver indiscernible to become
wp), and the Harrington-Kechris-Louveau Dichotomy simply fails.



Borel Reducibility: Small Equivalence Relations

Theorem

If E is the orbit equivalence relation of a Borel action of a group of
size at most k then E is Borel reducible to Ey.

Proof. The key observation is this: Let F,, denote the free group on
 generators. Then F, has cardinality less than x for o < r (this
fails when x equals w). Using this one shows that the shift action of
F.. (sending (g, X) in G x P(F.;) to {g-x | x € X}) reduces to Ey:
Map X C F, to the sequence f(X) = (<,-least element of

{8a- (XN FL) | ga € Fu} | @ < k). If X, Y are equivalent under
shift then it is easy to check f(X)Eyf(Y); the converse uses
Fodor’s theorem. [J



Borel Reducibility: Small Equivalence Relations

Theorem

Assume V = L. Then there is a smooth Borel equivalence relation
with classes of size 2 which is not induced by a Borel action of a
small group.

Proof. Let X be the Borel set of Master Codes for initial segments
of L of size k and ~ X its complement. Define a bijection

f :~ X — X with Borel graph and define E(x,y) iff y = f(x) or

x = f(y). Then E is smooth. If it were induced by a Borel action of
a group of size at most x then f would be Borel on a non-meager
set, which is impossible. [J



Borel Reducibility: £

Theorem
E;q is Borel reducible to Ey.

Proof idea: For limit a < &, define E{* to be the equivalence
relation on (2%)“ approximating Ej defined by (xj)icaE{'(Vi)i<a iff
for some B < «a, x; = y; for all i > f.

Now define F((x;j)i<x)() to be 0 if « is not a limit and otherwise
to be a code for the E{*-equivalence class of (x; [ @)i<q-

Clearly if (x;)i<xE1(yi)i<w then F((xi)i<x) and F((yi)i<x) are
Eo-equivalent.

Conversely, if (xi)i<x and (yi)i<x are not Ej equivalent then for
club-many o* < &, (xj | @®)i<a* and (yi | @*)i<q» are not

E{ -equivalent; it follows that F((x;)i<x) and F((y:)i<x) are not
Eo-equivalent. (I



Borel Reducibility: Isomorphism Relations

(a) Each Borel isomorphism relation is Borel reducible to the c-th
jump of equality for some o < k™.

(b) For each o < k™, the a-th jump of equality is Borel reducible to
equality on k" modulo a pi-nonstationary set, for any regular i < k.
(c) A first-order theory is classifiable and shallow iff the
isomorphism relation on its models of size  is Borel.

(d) (For a suitable successor k) A first-order theory is unclassifiable
iff equality on 2 modulo a pi-nonstationary set is Borel reducible to
the isomorphism relation on its models of size k for some regular
p< K.

Is equality on k* modulo a u-nonstationary set Borel reducible to
equality on 2% modulo a u-nonstationary set?
If so we have:



Borel Reducibility: Isomorphism Relations

If Ty is classifiable and shallow and T7 is unclassifiable then
isomorphism on the models of Ty of size x is Borel reducible to
isomorphism on the models of T; of size x (for example when & is
the successor of an uncountable regular and GCH holds).



