Descriptive Set Theory on Generalised Baire Space

Joint work with Khomskii-Kulikov (first part) and with Hyttinen-Kulikov (second part)

We assume $\kappa = \kappa^{<\kappa}$.

 κ -Baire space $= \kappa^{\kappa}$ consists of all $f: \kappa \to \kappa$, with basic open sets given by

$$\{f: \kappa \to \kappa \mid s \subseteq f\}$$

where $s \in \kappa^{<\kappa}$.

Nowhere dense = Closure has no interior Meager = union of κ -many nowhere dense sets

Baire measurable = differs from an open set by a meager set

The Baire Category theorem holds (the intersection of κ -many open dense sets is dense)

Baire measurability is just one example of a regularity property.

A forcing $\mathcal P$ is κ -treelike iff it is a κ -closed suborder of the set of subtrees of $\kappa^{<\kappa}$, ordered by inclusion.

Some examples of κ -treelike forcings:

 κ -Cohen \mathbb{C}_{κ} . These are subtrees of $2^{<\kappa}$ consisting of a stem and all nodes above it.

 κ -Sacks \mathbb{S}_{κ} . These are κ -closed subtrees of $2^{<\kappa}$ with the property that every node has a splitting extension and the limit of splitting nodes is a splitting node.

 κ -Silver \mathbb{V}_{κ} , for inaccessible κ . These are κ -Sacks trees T which are uniform, i.e. if s,t are elements of T of the same length then s*i is in T iff t*i is in T for i=0,1.

 κ -Miller \mathbb{M}_{κ} . These are κ -closed subtrees of the tree $\kappa_{\uparrow}^{<\kappa}$ of increasing sequences in $\kappa^{<\kappa}$ with the property that every node can be extended to a club-splitting node and the limit of club-splitting nodes is club-splitting. We also require continuous club-splitting, which means that if s is a limit of club-splitting nodes then the club witnessing club-splitting for s is the intersection of the clubs witnessing club-splitting for the club-splitting proper initial segments of s.

 κ -Laver \mathbb{L}_{κ} . These are κ -Miller trees with the property that every node beyond some fixed node (the stem) is club-splitting.

 κ -Mathias \mathbb{R}_{κ} . Conditions are pairs (s,C) where s is a bounded subset of κ and C is a club in κ . $(t,D) \leq (s,C)$ iff t end-extends s, $D \subseteq C$ and $t \setminus s \subseteq C$. This is equivalent to a κ -treelike forcing.

The 6 examples above fall into two groups:

 \mathbb{C}_{κ} , \mathbb{L}_{κ} and \mathbb{R}_{κ} are *topological*: The [T] for $T \in \mathcal{P}$ form the base for a topology (either $[S] \cap [T]$ is empty or contains some [U]). They are κ^+ -cc.

 \mathbb{S}_{κ} , \mathbb{M}_{κ} and \mathbb{V}_{κ} are not κ^+ -cc but they satisfy a form of *fusion* (called *Axiom A**), sufficient to show that κ^+ is preserved.

Remark. There is no obvious κ -analogue of Solovay forcing (random real forcing). However:

Theorem

(SDF-Laguzzi) If V=L and κ is inaccessible then there is a Δ^1_1 κ -treelike forcing \mathbb{B}_{κ} which is κ^+ -cc and κ^{κ} -bounding.

To define " \mathcal{P} -measurability" for κ -treelike forcings \mathcal{P} we proceed as follows.

A set A is:

Strictly \mathcal{P} -null if every tree $T \in \mathcal{P}$ has a subtree in \mathcal{P} , none of whose κ -branches belongs to A.

 \mathcal{P} -null (or \mathcal{P} -meager) if it is the union of κ -many strictly \mathcal{P} -null sets.

 \mathcal{P} -measurable (or \mathcal{P} -regular) if any tree $T \in \mathcal{P}$ has a subtree $S \in \mathcal{P}$ such that either all κ -branches through S, with a \mathcal{P} -null set of exceptions, belong to A or all κ -branches through S, with a \mathcal{P} -null set of exceptions, belong to the complement of A.

Proposition

- (a) If \mathcal{P} is topological then:
- (a1) A set is \mathcal{P} -measurable iff it differs from a \mathcal{P} -open set by a \mathcal{P} -null set. (So \mathbb{C}_{κ} -measurable is the same as Baire-measurable.)
- (a2) Not every \mathcal{P} -null set is strictly \mathcal{P} -null.
- (a3) Borel sets are P-measurable.
- (b) If P satisfies fusion (Axiom A*) then:
- (b1) Every \mathcal{P} -null set is strictly \mathcal{P} -null.
- (b2) Borel sets are \mathcal{P} -measurable.

Question. As in the case $\kappa = \omega$, are all Σ_1^1 sets \mathcal{P} -measurable?

Answer: NO!

Fact. The club filter $= \{f : \kappa \to 2 \mid f(i) = 1 \text{ for club-many } i < \kappa \}$ is not κ -Sacks (\mathbb{S}_{κ}) measurable.

Proof. Otherwise there is a κ -Sacks tree T such that either for all $f \in [T]$, f(i) = 1 for club-many $i < \kappa$ or for all $f \in [T]$, f(i) = 0 for stationary-many $i < \kappa$.

But we can easily build f_0 , f_1 in [T] such that whenever $f_0|i$ splits in T, f(i)=0 and whenever $f_1|i$ splits in T, f(i)=1. And the set of i where $f_0|i$ splits forms a club (same for f_1).

So [T] has an element f_0 which is not in the club filter and an element f_1 which is. \square

Now we can apply the following result to conclude that Σ^1_1 sets need not be \mathcal{P} -measurable for any of our 6 examples. For a pointclass Γ , let $\Gamma(\mathcal{P})$ denote that sets in Γ are \mathcal{P} -measurable.

Theorem

- (a) $\Gamma(\mathbb{C}_{\kappa}) \to \Gamma(\mathbb{V}_{\kappa}) \to \Gamma(\mathbb{S}_{\kappa})$.
- (b) $\Gamma(\mathbb{C}_{\kappa}) \to \Gamma(\mathbb{M}_{\kappa}) \to \Gamma(\mathbb{S}_{\kappa})$.
- (c) $\Gamma(\mathbb{R}_{\kappa}) \to \Gamma(\mathbb{M}_{\kappa})$.
- (d) $\Gamma(\mathbb{L}_{\kappa}) \to \Gamma(\mathbb{M}_{\kappa})$.

In particular $\Gamma(\mathbb{S}_{\kappa})$ is the weakest of them all, so as it fails for $\Gamma = \Sigma_1^1$ so do all the others.

Question. What about Δ_1^1 (\neq Borel for $\kappa > \omega$)?

Theorem

It is consistent to have $\Delta_1^1(\mathcal{P})$ for $\mathcal{P} = \mathbb{C}_{\kappa}$, \mathbb{L}_{κ} and \mathbb{R}_{κ} simultaneously.

This is proved by interleaving iterations with $<\kappa$ -support of these three forcings for κ^+ steps.

Note that in the above model we also have $\Delta^1_1(\mathcal{P})$ for $\mathcal{P}=\mathbb{M}_\kappa$, \mathbb{V}_κ and \mathbb{S}_κ , by the previous slide.

Question. But can we separate $\Delta_1^1(\mathcal{P})$ for different \mathcal{P} ?

This looks hard. But we have one result about it:

Theorem

There is a model where κ is inaccessible and $\Delta^1_1(\mathbb{V}_{\kappa})$ holds but $\Delta^1_1(\mathbb{M}_{\kappa})$ fails.

This is proved by iterating \mathbb{V}_{κ} for κ^+ steps over L, where κ is inaccessible; $\Delta^1_1(\mathbb{V}_{\kappa})$ holds in the resulting model.

The main lemma is that $\Delta_1^1(\mathbb{M}_{\kappa})$ yields functions from κ to κ that are unbounded over L[f], for any given $f: \kappa \to \kappa$.

As the iteration is κ^{κ} -bounding and therefore does not add functions which are unbounded over the ground model, we conclude that $\Delta^1_1(\mathbb{M}_{\kappa})$ fails.

It follows from our earlier implications between regularity properties that in the above model, $\Delta^1_1(\mathbb{C}_\kappa)$, $\Delta^1_1(\mathbb{R}_\kappa)$ and $\Delta^1_1(\mathbb{L}_\kappa)$ all fail, but $\Delta^1_1(\mathbb{S}_\kappa)$ holds.

The main difficulty with separating Δ_1^1 regularity properties is the lack of "Solovay-type characterisations".

In the classical setting we have:

(Solovay) Σ_2^1 sets are Baire-measurable iff for every real x there is a comeager set of reals Cohen over L[x].

(Shelah) Δ_2^1 sets are Baire-measruable iff for every real x there is a Cohen real over L[x].

In fact, Shelah's result provably fails for uncountable κ :

Theorem

(SDF-Wu-Zdomskyy) Suppose that κ is regular and uncountable in L. Then in a cofinality-preserving forcing extension, for every $x \subseteq \kappa$ there is a κ -Cohen over L[x] but the CUB filter on κ is Δ^1_1 . In particular not all Δ^1_1 sets are Baire-measurable.

Borel Reducibility

If E and F are equivalence relations on κ^{κ} then we say that E is Borel reducible to F, written $E \leq_B F$, if there is a Borel function f such that for all x,y: E(x,y) iff F(f(x),f(y)). The relation \leq_B is reflexive and transtive and we write \equiv_B for the equivalence relation it induces.

Borel Reducibility: Dichotomies

In the classical setting one has two important Dichotomies:

Silver Dichotomy. Suppose that E is a Borel equivalence relation on ω^{ω} with uncountably many classes. Then equality is Borel (even continuously) reducible to E.

Harrington-Kechris-Louveau Dichotomy. Suppose that E is a Borel equivalence relation. Then either E is Borel reducible to equality or E_0 is Borel reducible to E, where E_0 is the equivalence relation of equality mod finite.

In generalised Baire space, the Silver Dichotomy fails in L but consistently holds (after collapsing a Silver indiscernible to become ω_2), and the Harrington-Kechris-Louveau Dichotomy simply fails.

Borel Reducibility: Small Equivalence Relations

Theorem

If E is the orbit equivalence relation of a Borel action of a group of size at most κ then E is Borel reducible to E_0 .

Proof. The key observation is this: Let F_{κ} denote the free group on κ generators. Then F_{α} has cardinality less than κ for $\alpha < \kappa$ (this fails when κ equals ω). Using this one shows that the shift action of F_{κ} (sending (g,X) in $G \times \mathcal{P}(F_{\kappa})$ to $\{g \cdot x \mid x \in X\}$) reduces to E_0 : Map $X \subseteq F_{\kappa}$ to the sequence $f(X) = (<_{\alpha}$ -least element of $\{g_{\alpha} \cdot (X \cap F_{\alpha}) \mid g_{\alpha} \in F_{\alpha}\} \mid \alpha < \kappa$). If X, Y are equivalent under shift then it is easy to check $f(X)E_0f(Y)$; the converse uses Fodor's theorem. \square

Borel Reducibility: Small Equivalence Relations

Theorem

Assume V = L. Then there is a smooth Borel equivalence relation with classes of size 2 which is not induced by a Borel action of a small group.

Proof. Let X be the Borel set of Master Codes for initial segments of L of size κ and $\sim X$ its complement. Define a bijection $f:\sim X\to X$ with Borel graph and define E(x,y) iff y=f(x) or x=f(y). Then E is smooth. If it were induced by a Borel action of a group of size at most κ then f would be Borel on a non-meager set, which is impossible. \square

Borel Reducibility: E_1

Theorem

 E_1 is Borel reducible to E_0 .

Proof idea: For limit $\alpha < \kappa$, define E_1^{α} to be the equivalence relation on $(2^{\alpha})^{\alpha}$ approximating E_1 defined by $(x_i)_{i < \alpha} E_1^{\alpha}(y_i)_{i < \alpha}$ iff for some $\beta < \alpha$, $x_i = y_i$ for all $i > \beta$.

Now define $F((x_i)_{i<\kappa})(\alpha)$ to be 0 if α is not a limit and otherwise to be a code for the E_1^{α} -equivalence class of $(x_i \upharpoonright \alpha)_{i<\alpha}$.

Clearly if $(x_i)_{i<\kappa}E_1(y_i)_{i<\kappa}$ then $F((x_i)_{i<\kappa})$ and $F((y_i)_{i<\kappa})$ are E_0 -equivalent.

Conversely, if $(x_i)_{i<\kappa}$ and $(y_i)_{i<\kappa}$ are not E_1 equivalent then for club-many $\alpha^* < \kappa$, $(x_i \upharpoonright \alpha^*)_{i<\alpha^*}$ and $(y_i \upharpoonright \alpha^*)_{i<\alpha^*}$ are not $E_1^{\alpha^*}$ -equivalent; it follows that $F((x_i)_{i<\kappa})$ and $F((y_i)_{i<\kappa})$ are not E_0 -equivalent. \square

Borel Reducibility: Isomorphism Relations

Theorem

- (a) Each Borel isomorphism relation is Borel reducible to the α -th jump of equality for some $\alpha < \kappa^+$.
- (b) For each $\alpha < \kappa^+$, the α -th jump of equality is Borel reducible to equality on κ^{κ} modulo a μ -nonstationary set, for any regular $\mu < \kappa$.
- (c) A first-order theory is classifiable and shallow iff the isomorphism relation on its models of size κ is Borel.
- (d) (For a suitable successor κ) A first-order theory is unclassifiable iff equality on 2^{κ} modulo a μ -nonstationary set is Borel reducible to the isomorphism relation on its models of size κ for some regular $\mu < \kappa$.

Is equality on κ^{κ} modulo a μ -nonstationary set Borel reducible to equality on 2^{κ} modulo a μ -nonstationary set? If so we have:

Borel Reducibility: Isomorphism Relations

If T_0 is classifiable and shallow and T_1 is unclassifiable then isomorphism on the models of T_0 of size κ is Borel reducible to isomorphism on the models of T_1 of size κ (for example when κ is the successor of an uncountable regular and GCH holds).