Definability Degrees

Sy D. Friedman* Kurt Gödel Research Center for Mathematical Logic University of Vienna

March 22, 2005

We establish the equiconsistency of a simple statement in definability theory with the failure of the GCH at all infinite cardinals. The latter was shown by Foreman and Woodin ([2]) to be consistent, relative to the existence of large cardinals.

Definition. Suppose that κ is an infinite cardinal and A, B are subsets of κ . We say that A is κ -definable from B, written $A \leq_{\kappa} B$, iff A is definable over the structure $\langle L_{\kappa}[B], \in, B \rangle$. Two subsets of κ are κ -incomparable iff neither is κ -definable from the other.

We consider the following statement:

 $(*)_{\kappa}$ For each $C \subseteq \kappa$ there are κ -incomparable $A, B \subseteq \kappa$ such that $C \leq_{\kappa} A$ and $C \leq_{\kappa} B$.

Theorem 0.1 (*) $_{\kappa}$ holds for regular κ .

Proof. Let C be a subset of κ and let P be κ -Cohen forcing over the ground model L[C]. If (A, B) is $P \times P$ -generic over L[C] then it is easy to verify that (A, C) and (B, C) are κ -incomparable. As only genericity over $L_{\kappa+1}[C]$ is required, there exist such A, B in V. \square

 $^{^{\}ast}\mathrm{The}$ author was supported by Project Number 16334-NO5 of the Austrian Sciene Fund (FWF).

Theorem 0.2 Suppose that κ is a singular strong limit cardinal of uncountable cofinality and $(*)_{\kappa}$ holds. Then GCH fails at CUB-many $\bar{\kappa} < \kappa$.

Proof. This proof comes from [3], which was based on [4]. Let $\langle \kappa_i \mid i < \gamma \rangle$ be a continuous cofinal sequence of cardinals less than κ of ordertype $\gamma = \cot \kappa > \omega$. Let $C \subseteq \kappa$ be chosen so that $H_{\kappa} = L_{\kappa}[C]$ and both the sequence of κ_i 's as well as a wellordering < of H_{κ} are κ -definable from C. Also assume that whenever the GCH holds at κ_i , all subsets of κ_i have <-rank less than κ_i^+ .

For each ordinal $\delta < \kappa$ let c_{δ} be the <-least bijection between δ and its cardinality. For $\bar{\delta} < \delta$ set $c(\bar{\delta}, \delta) = c_{\delta}(\bar{\delta})$. Suppose now that GCH holds at κ_i for each $i \in S$, where $S \subseteq \gamma$ is stationary. For each $A \subseteq \kappa$ define $f_A : S \to \kappa$ by:

$$f_A(i) = \text{the } < \text{-rank of } A \cap \kappa_i.$$

Claim. Suppose that A, B are subsets of κ . If $f_A(i) \leq f_B(i)$ for stationarymany $i \in S$ then A is κ -definable from (B, C).

The Claim implies that $(*)_{\kappa}$ fails, as either $f_A(i) \leq f_B(i)$ for stationary-many $i \in S$ or $f_B(i) \leq f_A(i)$ for stationary-many $i \in S$.

Proof of Claim. Let S^* consist of all limit ordinals i in S such that $f_A(i) \leq f_B(i)$. Define the regressive function g on S^* by:

$$g(i) = \text{least } j \text{ such that } c(f_A(i), f_B(i) + 1) < \kappa_j.$$

By Fodor's Theorem, g is constant on a stationary, and hence unbounded, subset S^{**} of S^* . It follows that the function on S^{**}

$$h(i) = c(f_A(i), f_B(i) + 1)$$

has range bounded in κ and therefore is an element of $H_{\kappa} = L_{\kappa}[C]$. But for $i \in S^{**}$ we have

$$f_A(i) = c_{f_B(i)+1}^{-1}(h(i))$$

and therefore $f_A \upharpoonright S^{**}$ is κ -definable from (B,C). It follows that A is also κ -definable from (B,C). \square

Theorem 0.3 The following are equiconsistent:

- (a) $(*)_{\kappa}$ holds for all κ .
- (b) GCH fails for all κ .

Proof. Actually (b) implies (a) directly: Suppose that $(*)_{\kappa}$ fails. Then for some $C \subseteq \kappa$, all initial segments of the prelinear ordering $\langle \{A \mid C \leq_{\kappa} A\}, \leq_{\kappa} \rangle$ have cardinality at most κ , and therefore $\{A \mid C \leq_{\kappa} A\}$ has cardinality at most κ^+ . It follows that GCH holds at κ .

Now suppose that (a) holds; we show that (b) holds in a forcing extension of the universe. By Theorem 0.2, we know that GCH fails on a CUB subset of each singular strong limit cardinal of uncountable cofinality. It follows that the class X of cardinals where GCH fails is very stationary: For any CUB class D, $X \cap D$ contains arbitrarily-long closed subsets. Now add a CUB subclass C to X using conditions which are closed subsets of X, ordered by end-extension. Using the fact that X is very stationary, this forcing preserves ZFC (with a predicate for the generic class C) and adds no new sets (see [1]). GCH fails at cardinals in C. Now for each adjacent pair $\kappa < \lambda$ in C, add λ^{++} subsets of κ^+ , using an Easton product. In the generic extension, cardinals are unchanged and GCH fails at cardinals outside of C. So we have created a model in which GCH fails at every infinite cardinal. \square

References

- [1] Abraham, U. and Shelah, S., Forcing closed unbounded sets, Journal of Symbolic Logic 48, No.3 (1983), 643–657.
- [2] Foreman, M. and Woodin, H., The GCH can fail everywhere, Annals of Mathematics 133 (1991), 1-35.
- [3] Friedman, S., Negative Solutions to Post's Problem II, Annals of Mathematics 113 (1981), 25-43.
- [4] Silver, J., On the singular cardinals problem, in *Proceedings of the International Congress of Mathematicians*, Vancouver 1974, Vol. 1, 265-268.