David's Trick # Sy D. Friedman* M.I.T. In David [D82] a method is introduced for creating reals R which not only code classes in the sense of Jensen coding but in addition have the property that in L[R], R is the unique solution to a Π_2^1 formula. In this article we cast David's "trick" in a general form and describe some of its uses. **Theorem.** Suppose $A \subseteq \text{ORD}$, $\langle L[A], A \rangle \models ZFC + 0^{\#}$ does not exist and suppose that for every infinite cardinal κ of L[A], $H_{\kappa}^{L[A]} = L_{\kappa}[A]$ and $\langle L_{\kappa}[A], A \cap \kappa \rangle \models \varphi$. Then there exists a Π_2^1 formula ψ such that: - (a) If R is a real satisfying ψ then there is $A \subseteq ORD$ as above, definable over L[R] in the parameter R. - (b) For some tame, $\langle L[A], A \rangle$ -definable, cofinality-preserving forcing $P, P \Vdash \exists R \psi(R)$. Moreover if A preserves indiscernibles then ψ has a solution in $L[A, 0^{\#}]$, preserving indiscernibles. #### Remark - (1) We require that $H_{\kappa}^{L[A]}$ equal $L_{\kappa}[A]$ for infinite L[A]-cardinals solely to permit cofinality-preservation for P; if cofinality-preservation is dropped then such a requirement is unnecessary, by coding A into A^* with this requirement and then applying our result to A^* . - (2) A class A preserves indiscernibles if the Silver indiscernibles are indiscernible for $\langle L[A], A \rangle$. It follows from the technique of Theorem 0.2 of ^{*}Research supported by NSF Contract #9625997-DMS Beller-Jensen-Welch [BJW82] (see Friedman [98]) that if A preserves indiscernibles then A is definable from a real $R \in L[A, 0^{\#}]$, preserving indiscernibles. Proof. Our plan is to create an $\langle L[A], A \rangle$ -definable, tame, cofinality-preserving forcing P for adding a real R such that whenever $L_{\alpha}[R] \models ZF^-$ there is $A_{\alpha} \subseteq \alpha$, definable over $L_{\alpha}[R]$ (via a definition independent of α) such that $L_{\alpha}[R] \models$ for every infinite cardinal κ , $H_{\kappa} = L_{\kappa}[A_{\kappa}]$ and φ is true in $\langle L_{\kappa}[A_{\alpha}], A_{\alpha} \cap \kappa \rangle$. This property ψ of R is Π_2^1 and gives us (a), (b) of the Theorem. The last statement of the Theorem will follow using Remark (2) above. P is obtained as a modification of the forcing from Friedman [97], used to prove Jensen's Coding Theorem (in the case where $0^{\#}$ does not exist in the ground model). The following definitions take place inside L[A]. **Definition (Strings).** Let α belong to Card = the class of all infinite cardinals. S_{α} consists of all $s : [\alpha, |s|) \to 2$, $\alpha \le |s| < \alpha^+$ such that |s| is a multiple of α and: - (a) $\eta \leq |s| \to L_{\delta}[A \cap \alpha, s \upharpoonright \eta] \models \operatorname{Card} \eta \leq \alpha \text{ for some } \delta < (\eta^{+})^{L} \cup \omega_{2}.$ - (b) If $A = \langle L_{\beta}[A \cap \alpha, s \upharpoonright \eta], s \upharpoonright \eta \rangle \models (ZF^{-} \text{ and } \eta = \alpha^{+}) \text{ then over } A, s \upharpoonright \eta$ codes a predicate $A(s \upharpoonright \eta, \beta) = A^{*} \subseteq \beta \text{ such that } A^{*} \cap \alpha = A \cap \alpha \text{ and for}$ every cardinal κ of $L_{\beta}[A^{*}]$, $H_{\kappa}^{L_{\beta}[A^{*}]} = L_{\kappa}[A^{*}]$ and $\langle L_{\kappa}[A^{*}], A^{*} \cap \kappa \rangle \models \varphi$. **Remark** When in (b) above we say that $s \upharpoonright \eta$ codes A^* we are referring to the canonical coding from the proof of Theorem 4 of Friedman [97] of a subset of β by a subset of $(\alpha^+)^{\mathcal{A}} = \eta$ (relative to $A \cap \alpha$). The remainder of the definitions from the proof of Theorem 4 of Friedman [97] remain the same in the present context. We now verify that he proofs of the lemmas from Friedman [97] can successfully accommodate the new restriction (clause (b)) on elements of S_{α} . Lemma 1 (Distributivity for R^s). Suppose $\alpha \in \text{Card}$, $s \in S_{\alpha^+}$. Then R^s is α^+ -distributive in \mathcal{A}^s . *Proof.* Proceed as in the proof of Lemma 5 of Friedman [97]. The only new point is to verify that in the proof of the Claim, t_{λ} satisfies clause (b) (of the new definition of S_{α}). The fact that s belongs to $S_{\alpha^{+}}$ and that t_{λ} codes \bar{H}_{λ} imply that clause (b) holds for t_{λ} whenever β is at most $\bar{\mu}_{\lambda}$ = the height of \bar{H}_{λ} . But as $|t_{\lambda}|$ is definably singular over $L_{\bar{\mu}_{\lambda}}[t_{\lambda}]$ these are the only β 's that concern us. Lemma 2 (Extendibility of P^s). Suppose $p \in P^s$, $s \in S_{\alpha}$, $X \subseteq \alpha$, $X \in \mathcal{A}^s$. Then there exists $q \leq p$ such that $X \cap \beta \in \mathcal{A}^{q_{\beta}}$ for each $\beta \in \text{Card } \cap \alpha$. Proof. Proceed as in the proof of Lemma 6 of Friedman [97]. In the definition of q, the only instances of clause (b) to check are for s_{β} when Even $(Y \cap \beta)$ codes s_{β} , s_{β} satisfying clause (a) of the definition of membership in S_{β} . But the embedding $\bar{A}_{\beta} \to \mathcal{A}$ is Σ_1 -elementary and instances of clause (b) refer to ordinals less than the height of \mathcal{A} ; so the fact that s belongs to S_{α} implies that s_{β} belongs to S_{β} . \square Lemma 3 (Distributivity for P^s). Suppose $s \in S_{\beta^+}$, $\beta \in Card$. - (a) If $\langle D_i \mid i < \beta \rangle \in \mathcal{A}^s, D_i$ i^+ dense on P^s for each $i < \beta$ and $p \in P^s$ then there is $q \leq p$, q meets each D_i . - (b) If $p \in P^s$, f small in A^s then there exists $q \leq p$, $q \in \Sigma_f^p$. Proof. Proceed as in the proof of Lemma 7 of Friedman [97]. In the Claim we must verify that p_{γ}^{λ} satisfies clause (b). But once again this is clear by the Σ_1 -elementary of $\bar{H}_{\lambda}(\gamma)$ and the n fact that $L_{\bar{\mu}}[A\cap\gamma,p_{\gamma}^{\lambda}]\models|p_{\gamma}^{\lambda}|$ is Σ_1 -singular, where $\bar{\mu}=$ height of $\bar{H}_{\lambda}(\gamma)$. The argument of the proof of Lemma 3 can also be applied to prove the distributivity of P, observing that when building sequences of conditions $\langle p^i \mid i < \lambda \rangle$, λ limit to meet an $\langle L[A], A \rangle$ -definable sequence of dense classes, one has that p_{γ}^{λ} codes $\bar{H}^{\lambda}(\gamma)$ of height $\bar{\mu}$, where $L_{\bar{\mu}+1}[A \cap \gamma, p_{\gamma}^{\lambda}] \models |p_{\gamma}^{\lambda}|$ is not a cardinal. Thus there is no additional instance of clause (b) to verify beyond those considered in the proof of Lemma 3. Thus P is tame and cofinality-preserving. The final statement of the Theorem also follows, using Remark (2) immediately after the statement of the Theorem. ### **Applications** - (1) Local Π₂-Singletons. David [D82] proves the following: There is an L-definable forcing P for adding a real R such that R is a Π₂-singleton in every set-generic extension of L[R] (via a Π₂ formula independent of the set-generic extension). This is accomplished as follows: One can produce an L-definable sequence ⟨T(κ) | κ an infinite L-cardinal⟩ such that T(κ) is a κ⁺⁺-Suslin tree in L for each κ and the forcing ∏ T(κ) for adding a branch b(κ) through each T(κ) (via product forcing, with Easton support) is tame and cofinality-preserving. Now for each n let X_n ⊆ ω₁^L be class-generic over L, X_n codes a branch through T(κ) iff κ is of the form (ℵ_{λ+n}^L), λ limit. The forcing ∏ P_n, where P_n adds X_n, can be shown to be tame and cofinality-preserving. Finally over L[⟨X_n | n ∈ ω⟩] add a real R such that n ∈ R iff R codes X_n. Then one has that in L[R], n ∈ R iff T(ℵ_{λ+n}^L) is not ℵ_{λ+n}^L-Suslin for sufficiently large λ. Clearly this characterization will still hold in any set-generic extension of L[R]. David's trick is used to strengthen this to a Π₂ property of R. - (2) A Global Π_2^1 -Singleton. Friedman [90] produces a Π_2^1 -singleton R, $0 <_L R <_L 0^\#$. This is accomplished as follows: assume that one has an index for a $\Sigma_1(L)$ classification $(\alpha_1 \cdots \alpha_n) \mapsto r(\alpha_1 \cdots \alpha_n)$ that produces $r(\alpha_1 \cdots \alpha_n) \in 2^{<\omega}$ for each $\alpha_1 < \cdots < \alpha_n$ in ORD such that $R = \bigcup \{r(i_1 \cdots i_n) \mid i_1 < \cdots < i_n \text{ in } I = \text{Silver indiscernibles } \}$. For each $r \in 2^{<\omega}$ there is a forcing $\mathbb{Q}(r)$ for "killing" all $(\alpha_1 \cdots \alpha_n)$ such that $r(\alpha_1 \cdots \alpha_n)$ is incompatible with r. No $(i_1 \cdots i_n)$ from r can be killed. Now build r such that $r \subseteq r$ iff r codes a r codes a r codes a r codes a r is the unique real with this property. David's trick is used to strengthen this to a r codes. - (3) New Σ_3^1 facts. Friedman [98] shows that if M is an inner model of ZFC, $0^{\#} \notin M$, then there is a Σ_3^1 sentence false in M yet true in a forcing extension of M. This is accomplished as follows: let $\langle C_{\alpha} | \alpha L$ -singular be a \square -sequence in L; i.e., C_{α} is CUB in α , $otC_{\alpha} < \alpha$, $\bar{\alpha} \in \lim C_{\alpha} \to C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$. Define $n(\alpha) = 0$ if otC_{α} is L-regular and otherwise $n(\alpha) = n(otC_{\alpha}) + 1$. Then for some n, $\{\alpha \mid n(\alpha) = n\}$ is stationary in M. And for each n, there is a tame forcing extension of M in which $\{\alpha \mid n(\alpha) \leq n\}$ is non-stationary, and is in fact disjoint from the class of limit cardinals. David's trick is used to strengthen the latter into a Σ_3^1 property. ## References - [D82] R. David, A Very Absolute Π_2^1 -Singleton, Annals of Pure and Applied Logic, 23, pp. 101–120. - [BJW82] A. Beller, R. Jensen, P. Welch, Coding the Universe, book, Cambridge University Press. - [90] S. Friedman, The Π_2^1 Singleton Conjecture, Journal of the American Mathematical Society, Vol. 3, No. 4, pp. 771–791. - [97] S. Friedman, Coding without Fine Structure, Journal of Symbolic Logic, Vol. 62, No. 3, pp. 808–815. - [98] S. Friedman, New Σ_3^1 Facts, to appear. - [99] S. Friedman, Fine Structure and Class Forcing, book, in preparation.