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In this paper we prove Jensen’s Coding Theorem, assuming ~ 0%, via a proof that makes
no use of the fine structure theory. We do need to quote Jensen’s Covering Theorem, whose
proof uses fine-structural ideas, but we make no direct use of these ideas. The key to our
proof is the use of “coding delays.”

Coding Theorem (Jensen) Suppose (M, A) is a model of ZFC + O# does not exist.
Then there is an (M, A)-definable class forcing P such that if G C P is P-generic over
(M, A):

(a) (M[G], A,G) [ ZFC.

(b) M[G]EV =L[R],R Cwand (M[G], A,G) = A,G are definable from the parame-
ter R.

In the above statement when we say “(M, A) E ZFC” we mean that M = ZFC and
in addition M satisfies replacement for formulas that mention A as a predicate. And “P-
generic over (M, A)” means that all (M, A)-definable dense classes are met.

The consequence of ~ O# that we need follows directly from the Covering Theorem.

Covering Theorem (Jensen) Assume ~ O#. If X is an uncountable set of ordinals then
there is a constructible Y O X, card Y = card X.

Lemma 1 (Jensen) Assume ~ O#. If j : Ly, — Lg is ¥Xj-elementary, a > w, and
k = crit(j) then a < (kT)F.

Proof Of course crit(j) denotes the least ordinal x such that j(x) # s, which we assume
to exist. Now let U = {X C k|X € Lo,k € j(X)}. If @ > (k)" then U is an ultrafilter
on all constructible subsets of x and we can form Ult(L,U) = ultrapower of L by U (us-
ing constructible functions to form the ultrapower). If this is well-founded then we get a
nontrivial elementary embedding L. — L, which gives O# by a theorem of Kunen.

Now we know that Ult(L,,U) is well-founded since it embeds into Lg (using: k([f]) =
J(f)(k)). And by a Lowenheim-Skolem argument, if Ult(L,U) were ill-founded then so
would be Ult(L.+,U),kt = the real k. So we may assume that x > wy as otherwise
kT < wy < a and the facts above would imply that Ult(L,U) were well-founded.

Using the Covering Theorem and the fact that k > wy we show that if (X, |n € w)
belong to U then N X,, # ¢ (U is “countably complete”), a fact that immediately yields

the well-foundedness of Ult(L,U).

Apply Covering to get I' € L of cardinality wy such that X,, € I for each n. As
K > wq, F' has L-cardinality < x and also we may assume that [ is a subset of P(x) N L.
So F € Lty C La and there is a bijection h : ' — v,y < k,h € L,. Let F* ={X €
Flk € j(X)}; then F* € L, since h[I™*] = {j(R)(Y)|Y € j(F).k € Y} belongs to Lz and
hence to L, C L,. So NF* # ¢ since j(NIF™*) = Nj[F*] contains x and j is ¥;-elementary.
As {X,|n € w} C F* we get N X,, # ¢, as desired.
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Next we show that to prove the Coding Theorem we may assume that the GCH holds
in M, and that instead of coding into a real, it is enough to code into a “reshaped” subset
of wy.

Lemma 2 (Folklore) If (M, A) is a model of ZFC then there is an (M, A)-definable forcing
P* such that if G* is P*-generic over (M, A) then for some B C ORD(M), B is definable
over (M[G*], A, G*) and this model satisfies ZFC'+GCH +V = L[B]+ A, G* are definable
relative to B. And if M satisfies ~ O% then so does M[G*].

Proof First, by forcing with conditions p : @ — 2.0 € ORD, ordered by p < ¢ iff p
extends ¢ we can obtain B as above, except for the GCH. This is beause if G is generic for
this forcing and By = {f|p(f) = 1 for some p € G§} then M[G}] = V = L[By] and using
By we can identify A with a class of ordinals By; let B = the join of By, B;.

Second, we force over (L[B], B) to obtain the GCH. As usual, 1, is defined (in L[B])
by: Jo= w, Ja41= 27 and J)= U{d, |a < A} for limit A. For any a P(a) is the forcing
whose conditions are p: 3 — 272, 3 <37F, ordered by p < ¢ iff p extends q. We take P
to be the “Easton product” of the P(a)’s: a condition in Pis p: a(p) — L[B], p € L[B]
such that p(a) € P(a) for each a < a(p) and such that {f# < a|p(f8) # ¢} is bounded
in a for inaccessible a@ < a(p). For any a P factors as P(> a) x P(< a) where P(> «a)
is le'ﬂ—closed and P(< «) has cardinality <J,41. It follows that ZFC is preserved, the
infinite successor cardinals of the generic extension are the 3% of L[B] and that the GCH
holds in the generic extension. And if L[B] satisfies ~ O# then so does the P-generic
extension, since for singular strong limit cardinals & of L[B], k¥ of L[B] = x* of L and x*
of L[B] = kT of the P-generic extension.

Let P* be the product of the two forcings described above. A

Definition b C wy is reshaped if £ < wy — £ is countable in L[bN &].

Lemma 3 (Jensen-Solovay [68]) Suppose M |= ZFC +V = L[b] where b is a reshaped
subset of wy. Then there is a CCC forcing P such that if G is P-generic over M then
MI|G] E V = L[R] where R C w.

Proof Using the fact that b is reshaped we may choose (R’g|§ < wy) so that for each & < wy,
R} is the least real in L[bN ¢] distinct from each R, & < €. Let Re = {n < w[n codes a
finite initial segment of the characteristic function of Rg}. Then &o # &1 — Re, N Ry, is
finite.

A condition in P is p = (s(p),s*(p)) where s(p) is a finite subset of w and s*(p) is a
finite subset of b. Extension is defined by: p < ¢ iff s(p) end extends s(q), s*(p) 2 s*(¢)
and £ € s*(¢q) — s(p) — s(q) is disjoint from R¢. This is ccc and if G is P-generic,
R = U{s(p)|p € G} then £ € biff RN R¢ is finite. So inductively we can recover bN &, R
in L[R]. And p € G iff s(p) is an initial segment of R, & € s*(p) — Re N R C s(p). So
M[Gl| =V =L[b,G]= L[R]. -

Thus the Coding Theorem with ~ O# reduces to:

Theorem 4 Suppose that A C ORD and (L[A], A) is a model of ZFC + GCH + ~
O#. Then there is an (L[A], A)-definable class forcing P such that if G is P-generic over
(L[A], A) :



(a) (L[A,G], A, G) is a model of ZFC.

(b) L[A], L[A,G] have the same cofinalities.

(c) L[A,G]= L[X] where X is a reshaped subset of w; and A, G are definable over L[X]
with parameter X.

It is useful to make the following harmless assumption about A : if H,,a an infinite
L[A]-cardinal, denotes {X € L[A]| transitive closure (X) has L[A]-cardinality < a} then
H, = L,[A]. This is easily arranged using the GCH in L[A].

Definition of the Forcing P
Let Card = all infinite cardinals, Cardt = {a*|a € Card} and Card’ = all uncountable
limit cardinals. Of course these definitions are made in V = L[A].

Definition (Strings) Let a € Card. S, consists fo all s : [a,|s]) — 2, a < |s| < o™
such that |s| is a multiple of a and for all n < |s|, Ls[ANa, s | 5] E card(n) < « for some
é < (77+)L U wo.

Thus for a > wy we insist that s is “quickly reshaped” in that 5 < |s| is collapsed relative
to ANa, s [ 5 before (yt)~. This will enable us to establish cofinality-preservation, using
Lemma 1. Note that we allow |s| = «, in which case s = ¢, the “empty string at a.” Also
for s,t € S, write s <t forsCtand s<tfors<t s#t.

Definition (Coding Structures) For s € S, defome p<*,u® inductively by: u<¢s =
a, ;1<f = U{pt|t < s} for s # ¢, and p® = least u > p<* such that u'u = p for ' < p and
LyANa,s] | “s€8S,”. And A®* = L,s[ANa,s], A< = (L,<:[ANa,§,AN a,s) where
s§={u~"+ 0|t <s,6 < a,s(|t| +5) =1}.

Thus by definition there is § < p® such that Ls[AN a,s] |= card(|s|) < a and L, =
card(d) < |s|, when a > wy. For |s| = 7+ a,n a multiple of a, A<® has universe A*/" and
for |s| a limit of multiples of a, A<* = U{A<!|t < s}.

Definition (Coding Apparatus) For w # a € Card,s € S,, 1 < a let H*(¢) = ¥; Hull of
iU{ANa,s}in A° and f*(i) = ordertype (H*(i) NORD). For a € Card™, b* = Range(f* |
B?) where B®* = {i < a|i = H*(i) Na}. Also for n < |s|, n = [t| + J, § < a,t < s we define
b1 = {y + 4|y € b'}.

Definition (A Partition of the Ordinals) Let B,C, D, E denote the classes of ordinals
congruent to 0, 1,2.3 mod 4, respectively. Also for any ordinal & and X = B, C, D or F we
write aX for the a'h element of X.

Definition (The Successor Coding) Suppose a € Card,s € S,+. A condition in R® is a
pair (t,t*) where t € S,, t* C {b°!"|a < 5 < |s|}, card(t*) < a. Extension of conditions is
defined by: (to,t5) < (t1,t7) iff t1 < to, t] C t§ and:

(a) [t <P <|tol. v € b1 € 87 — to(v7) = 0 or s().

(b) Jtal <7 < tol, v = (v0.711): 70 € A — 1o(7) = 0.

An R°-generic is determined by a function T : at — 2 such that s(n) = 0iff T(y?) = 0
for sufficiently large v € b°!" and such that for v < a® : 79 € Aiff T'(v%) = 0 for sufficiently
large ¥ = (70, 71) < a¥.

Now we come to the definition of the limit coding, which incorporates the idea of “coding
delays”. Suppose s € S,, a € Card’ and § = ((ps:p3)|B € CardNa) where pg € Sp for
each f € CardNa. We wish to define: “p codes s”. A natural definition would be: for
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n < |s|, pa(f*1"(8)) = s(n) for sufficiently large 3 € CardNa. There are problems with
this definition however. First, to avoid conflict with the successor coding we should use
F217(3)P instead of f°17(3). And it is convenient and sufficient to only require the above
for 3 € Card* Na. However, there are still serious difficulties in making sure that the
coding of s is consistent with the codings of pg by p | 8, for 8 € Card’ Na. To solve these
problems Jensen used O to make these codings almost disjoint, for singular a; this creates
new difficulties, resulting from the fact that the singular and inacessible codings are thereby
different.

We introduce Coding Delays to facilitate an easier proof of extendibility of conditions.
The rough idea is to code s(n) not at fs[”(ﬁ)D but instead just after the least ordinal
> fs[”(ﬁ)D where pg takes the value 1.

Definition. Suppose a € Card’, s € S,. Let i® be defined just like u® but with the
requirement “up'p = p for p’ < p” replaced by the weaker requirement “u a limit ordinal.”
Then note that A* = L;:[ANa, s] belongs to A®, contains s and the ¥; Hull (aU{ANa, s})
in A* = A*. Now X codes s if X is the 3, theory of A® with parameters from a U {ANa,s}
(viewed as a subset of a).

Definition. (Limit Coding) Suppose s € S,,a € Card’ and p = ((pﬁ;pE)W € CardNa)
where pg € Sg for each g € CardNa. We wish to define “p codes s”. First we define
a sequence (s,|y < 7o) of elements of S, as follows. Let sg = ¢,. For limit v < 7g,
s, = U{s;5|6 < 7}. Now suppose s, is defined and let f,”(3) = least § > f*¥ () such that
pp(6P) = 1, if such a § exists. If f;”(ﬁ) is undefined for cofinally many B € Card® Na
then set 79 = 7. Otherwise define X C a by: § € X iff pg(( p.s.” (B)+1+8)P) =1 for
sufficiently large 8 € Card™ Na. If Even (X) codes an element ¢ of S, extending s, such
that f;ﬂ,X € A" then set 5,41 = t. Otherwise let s,41 be s, * X P if this definition yields
;N € A*v+1 (and otherwise vo = 7). Now p ezactly codes s if s = s, for some v < ¢ and p
codes s if s < s, for some 7 < vq.

Definition (The Conditions) A condition in P is a sequence p = ((p,, p})|a € Card, a <
a(p)) where a(p) € Card and:

(a) pa(p) € Sa(p)tp;(p) = ¢

(b) For a € CardNa(p), (pa, p) € RPat.

(c) Fora € Card’, a < a(p),p|a¢€ AP, p | a exactly codes p,.

(d) For a € Card’, @ < a(p), a inaccessible in AP=, there exists CUB C' C a, C' € AP
such that g € € — pj = ¢.

Conditions are ordered by: p < ¢ iff a(p) > a(q), p(a) < ¢(a) in RPat for a €
CardNe(p) N (a(q) + 1) and p,(,) extends q,(,) if a(q) = a(p).

It is also useful to define some approximations to P : For a € Card, P<® denotes the
set of all conditions p such that a(p) < a. Also for s € S,, w < a € Card, P° denotes P<*
together with all p | a for conditions p such that a(p) = a, Pa(p) < s. To order conditions in
P*, first define p* = pforp € P<* and forp € P*—P<*,p* [a =pand pT(a) = (s | n,¢),
7 least such that p € P*!"; then p < ¢ iff pt < ¢ as conditions in P.

It is worth noting that (c) above implies that fP* dominates the coding of p, by p | «,
in the sense that fPe strictly dominates each fgfa[r’, n < |pa| on a tail of Card* Na. The



purpose of (d) is to guarantee that extendibility of conditions at (local) inaccessibles is not
hindered by the Successor Coding (see the proof of Extendibility below).

We now embark on a series of lemmas which together show that P is the desired forcing:
P preserves cofinalities and if G is P-generic over (L[A], A) then L[A,G] = L[X] for some
X Cuwy, Ais L[X]-definable from the parameter X.

Lemma 5 (Distributivity for R*) Suppose a € Card, s € S,+. Then R* is a™-distributive
in A% if (D;]i < a) € A® is a sequence of dense subsets of R® and p € R® then there is
g < p such that ¢ meets each D;.

Proof Choose pu < p® to be a large enough limit ordinal such that p, (D;]i < a), A<* €
A=L,[ANnat,s]. Let (a;]i < a) enumerate the first a elements of {8 < a™|3 = at N3,
Hull of (8U {p, (Di]i < a), A<*}) in A}.

Now write p as (to, ;) and successively extend to (#;,¢}) for ¢ < a as follows: (#;41,%%, )
is the least extension of (f1,¢}) meeting D; such that ¢, contains {6°I"|n € H;N|s|} where
H; = ¥y Hull of a; U {p,(D;]i < a), A<*} in A and: (a) If °!7 € #¥, s(n) = 1 then
tiv1(7”) = 1 for some v € b1, 4 > [t;]. (b) If o & A, y0 < [t:] then ;1 ((y0,71)7) = 1
for some y1 > [t;].

The lemma reduces to:

Claim (t),t}) = greatest lower bound to ((¢;,¢7)|i < A) exists for limit A < a.

Proof of Claim. We must show that £y = U{#;]7 < A} belongs to S,. Note that (t;|i < A)
is definable over H = transitive collapse of Hy and by construction, ¢y codes H, definably
over Lz, [ta], where jiy = height of H,. So ¢ is reshaped, as |¢,| is singular, definably over
Lz [ty]. By Lemma 1, gy < (|tx|t)" if @ > wy. So ty belongs to S,.

The next lemma illustrates the use of coding delays:

Lemma 6 (Extendibility for P*) Suppose p € P*, s € S,, X C a, X € A®. Then there
exists ¢ < p such that X N 3 € A% for each 8 € CardNa.

Proof Let Y C a be chosen so that Even (Y) codes s and Odd (Y') is the ¥; theory of A
with parameters from a U {A N a, s}, where A is an initial segment of .4° large enough to
extend A° and to contain X,p. For B € CardNa, let Ag = transitive collapse of ¥; Hull
(BU{ANa,s})in A, and g(8) = g+ of Ap.

Define ¢ as follows: qg = sg if Even (Y N 3) codes sz € Sg, ¢z = pg * (Y N B)¥ for
other 8 € Card'Ne, ¢z = pg * (Y N ﬁ)E +O %1% (YN ﬁ)D where O has length ¢(pB) for
B € Card™ Na. And q5 = pj for all g € CardNa.

As g | B, Y N3 are definable over Ag for 8 € Card Na we get g | 8, Y N B € A°# when
Even(Y N ) codes sg € Ss. Also g [ 8, Y NS € A% for other 8 € Card’ Na as Odd (Y N 3)
codes Ag. And note that for all 3 € Card'Na, g | 3 dominates fP% on a final segment of
Card* N3, unless Even (Y N 3) codes sg = pg, in which case ¢ | # exactly codes sg because

p | B does.
So we conclude that ¢ | 3 exactly codes gg for sufficiently large 8 € Card’ Na and clearly

X N3 € A% for such 3. Apply induction on a to obtain this for all 8 € Card’ Na. Finally,
note that the only problem in verifying ¢ < p is that the restraint pj may prevent us from
making the extension gg of pg when g3 = sg, Even (Y N ) codes sg. But property (d) in
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the definition of condition guarantees that pi = ¢ for §in a CUB C C o, C € A®. We
may assume that C € A and hence for sufficiently large § as above we get § € C and hence
p3 = ¢. So ¢ < p on a final segment of CardNa, and we may again apply induction to get
q < p everywhere.

The key idea of Jensen’s proof lies in the verification of distributivity for P*. Before we
can state and prove this property we need some definitions.

Definition Suppose 3 € Card* Naand D C P, s € S,. Dis f-denseon P*ifVp € P*3q €
P*(qg < p,gmeets Dand ¢ [ 3=p]| B). X C CardNa is thin in A® if X € A/ and for each
inaccessible § < a, A® = X N 3 is not stationary in 3. A function f: CardNa — V in
A? is small in A® if for each § € CardNa, f(f) € Hg‘;, card(f(8)) < fin A and Support
(f) ={p € Cardnalf(B) # ¢} is thin in A®. If D C P? is predense and p € P*, § € Card
we say that p reduces D below (3 if for some v € Card™ v < 8, {r|rUp | [y, a) meets D} is
predense on PP7 below p | v. Finally, for p € P?, f small in A® we define ZZ} =allg<p
in P* such that whenever g € CardNa, D € f(53), D predense on PPs* then ¢ reduces D
below f.

Lemma 7 (Distributivity for P°) Suppose s € Sg+, 8 € Card.

(a) If (D;|i < B) € A%, D; i*-dense on P* for each i < 3 and p € P* then thereis ¢ < p,
¢ meets each D;.

(b) If p € P*, f small in A® then there exists ¢ < p, q € ZZ}.

Proof We demonstrate (a) and (b) by a simultaneous induction on §. If § = w or belongs
to Card® then by induction (a) reduces to the *-distributivity of R® in A®, Lemma 5.
And (b) reduces to: if S is a collection of f-many predense subsets of P, S € A° then
{q € P?|q reduces each D € S below 3} is dense on P°. Again this follows from Lemma 5
since P*® factors as R® xQ where 17" IF @ is 1 — cc, and hence any p € P® can be extended
to ¢ € P* such that D? = {r € D|q(p) < r(f) in R*} is predense < ¢ for each D € S and
hence ¢ reduces each D € S below (.

Now suppose that 3 is inaccessible. We first show that (b) holds for f, provided f(3) = ¢.
First select a CUB C C g in A® such that v € C — f(y) = ¢ and extend p so that
f 1 v.CnN~ belong to AP for each v € CardNBt. Then we can successively extend p on
[Bi, Bit1] in the least way so as to meet ZZ} on [B7, Biy1], where (B;]i < 3) is the increasing
enumeration of C'. At limit stages A, we still have a condition, as the sequence of first A
extensions belongs to APPx. The final condition, after § steps, is an extension of p in Ziﬁ.

Now we prove (a) in this case. Suppose p € P* and (D;|i < ) € A*, D; is i*-dense on
P? for each 7 < 8. Let pg < p® be a big enough limit ordinal so that (D;|t < §),p, i* € L,
[AN BT, s] and for i < 8 let u; = po +w -1 < p®. For any X we let H;(X) denote ¥
Hull(X U{(Ds]i < B), p, i*,s, ANST}) in L, [ANST,s].

Let f; : CardNB — V be defined by: fi(v) = H,++ 0 Hi(y) if © < v € Hi(y),
i <y < fand fi(y) = ¢ otherwise. Then each f; is small in .A® and we inductively define
p=7p°>p' > ... in P?® as follows: p't! = least ¢ < p such that:

(a) q(B) meets all predense D C R*, D € H;(j3).

(b) ¢ meets ZZ}: and D;.

() glit=p It ,
For limit A < 8 we take p* to be the greatest lower bound to (p'|i < A), if it exists.

6



Claim p* is a condition in P?, where p*(y) = (U{p}|i < A}, U{pfy*|i < A}) for each
v € Card NGT.

First we verify that pg\ = U{pﬂi < A} belongs to S,,. Let H(v) be the transitive collapse
of Hy(y) and write H)(vy) as Lz[A, 5], P = image of P°* N H)(y) under transitive collapse,
3 = image of 3 under collapse. Also write P as R® « P% where G denotes an R*-generic
(just as P® factors as R® « POs, (3 denoting an R*-generic).

Now the construction of the p*’s (see conditions (a), (b)) was designed to guarantee that
if v € Hi(y) then G5 = {p € R*|p is extended by some p'(3)} is R°-generic over H,(v),
where p* = image of p' under collapse, and that for each v < § < 3 in Card™(H (7)), {p|p

is extended by some p' | [y,4d) in Fﬁé} is ng—generic over A% = U{APi|i < A} where

F?ﬁ denotes the image under collapse of Pﬁg ={q | [7,0)|q € PPs},5 = image of & under
collapse.

Note: We do not necessarily have the previous claim for § = 3, and this is the source of
our need for ~ O# in this proof.

By induction, we have the distributivity of P’ for t € S5, § € Card™ N3, and hence that
of P' for f € S5,6 € Card™(H\(v)), § < B. So the “weak” genericity of the preceding
paragraph implies that:

(d) LglANn 7,p,Ay] = |p,AY| is a cardinal.

Also:

(e) Lz[An~y.pi] E |p}|is ¥y-singular.

Thus p} € S, (by (e)) provided we can show that when y > w,, i < (|pj[*)%. But
H,(y) = H)(v) gives a ¥-elementary embedding with critical point |p§|7 so by Lemma
1, this is true. Also note that we now get p* | v € APY as well, since p* | 7 is definable
over H () and we defined AP7 to be large enough to contain Hy(y), since Lj |= |p§| is a
cardinal by (d).

The previous argument applies also if v = [, using the distributivity of R®, or if v =
BN Hx(7), using the fact that pg collapses to pi‘. If v < +*=min(Hx(y) N[y, 0)) then we
can apply the first argument to get the result for v*, and then the second argument to get
the result for 7.

Finally, to prove the Claim we must verify the restraint condition (d) in the definition

of P. Suppose 7 is inaccessible and for i < X let C be the least CUB subset of v in AP%
disjoint from {¥ < y|pix # ¢}. If X < v then N{C"|i < A} witnesses the restraint condition
for p* at 7, if v < X then the restraint condition for p* at + follows by induction on A and
if ¥ = A then A{C’|i < A} witnesses the restraint condition for p* at 7, where A denotes
diagonal intersection.

Thus the Claim and therefore (a) is proved in case  is inaccessible. To verify (b) in
this case, note that as we have already proved (b) when f(8) = ¢ it suffices to show: if
(D;]i < B) € A® is a sequence of dense subsets of P* then ¥Yp3g < p (q reduces each D;
below 3). But using distributivity we see that D¥ = {¢|q reduces D; below i*} is i*-dense
for each 7 < 3 so again by distributivity there is ¢ < p reducing each D; below it.

We are now left with the case where 3 is singular. The proof of (a) can be handled using
the ideas from the inaccessible case, as follows. Choose (;]i < Ag) to be a continuous and
cofinal sequence of cardinals < 3, A\g < fg. First, we argue that p € P? can be extended to
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meet Z? for any f small in A, provided f(8) = ¢ : Extend p if necessary so that for each

v € CardNg*, f | v and {3]|B; < v} belong to AP>. Now perform a construction like the
one used to prove distributivity in the inacessible case, extending p successively on [fp, ﬁﬂ
so0 as to meet ZZ} on [, 3] as well as appropriate ZZ}; s defined on [fy, 3] to guarantee

that p’\ is a condition for limit A < Ag. Note that each extension is made on a bounded
initial segment of [fg, #) and therefore by induction ZZ}, ZZ}: can be met on these intervals.
The result is that p can be extended to meet ZZ} on a final segment of Card NS and therefore
by induction can be extended to meet Z?. Second, use the density of ZZ} when f(3) = ¢ to
carry out the distributivity proof as we did in the inaccessible case. And again, (b) follows
from (a). This completes the proof of Lemma 7. 4

Now the same argument as used above also shows:

Lemma 8 (Distributivity for P) If (D;]i < ) is (L[A], A)-definable, each D; is i*-dense
on P and p € P then there exists ¢ < p, ¢ meets each D;.

Extendibility for P* and Distributivity for P give us the conclusions of Theorem 4. This
completes the proof.
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