CLASS FORCING

SY D. FRIEDMAN
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The method of forcing has had great success in demonstrating the relative
consistency and independence of set-theoretic problems with respect to the tra-
ditional ZFC axioms, or to extensions of these axioms asserting the existence of
large cardinals. One begins with a model M, selects a partial-ordering P € M
and shows that statements of interest hold in extensions of M of the form M[G],
when G is P-generic over M.

However, forcing can play another réle in set theory. Not only is it a tool
for establishing relative consistency and independence results, it is also a tool
for proving theorems. This theorem-proving réle of forcing in set theory did not
become fully apparent until the development of class forcing.

In class forcing, the partial-ordering P is no longer assumed to be an element of
M, but instead a class in M. Section 2 below introduces the necessary definitions.
We can nevertheless in this introduction explain the special role of class forcing
in set theory by posing the basic question:

Question. Do P-generic classes exist?

This question never arises in traditional applications of forcing, for the simple
reason that, thanks to the Lowenheim-Skolem Theorem, one can assume that
the model M is countable. This assumption assures an easy construction of a
P-generic class. Without the countability assumption, our question becomes a
serious one, in light of the following:

Fact 1. There exist L-definable class forcings Py, P; such that if Gy, G; are P,
P,-generic over L, respectively, then:

(a) ZFC holds in (L[Gy], Go) and in (L[G4], Gy).
(b) ZFC (indeed Replacement) fails in (L[Gy, G1], Go, G1).
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This Fact forces us to make a choice: we cannot preserve ZFC and have generics
for all ZFC preserving class forcings.

The Silver-Solovay theory of 0% provides a useful criterion for selecting the L-
definable forcings which “should” have generics. We say that L is rigid if there
is no elementary embedding from (L, €) to itself, other than the identity.

Fact 2. L is rigid in class-generic extensions of L. If L is not rigid then there
is a smallest inner model in which L is not rigid, and this inner model is L[0%],
where 0% is a real.

Now we say that an L-definable forcing P is relevant if there is a class which
is P-generic over L and which is definable in the inner model L[0%]. If P, and P,
are relevant forcings then clearly generics for Py and for P; can coexist, as they
both exist definably over L[0#]. Moreover, by adopting the base theory ZFC +0%
exists, we can hope to use the theory of relevant forcing to prove new theorems,
by constructing objects which actually exist (in the inner model L[0#]) rather
than which may exist in a generic extension of the universe.

In this article we discuss the basic theory and applications of class forcing, with
an emphasis on three problems posed by Solovay which can be resolved using it.
As class forcing, unlike traditional set forcing, does not in general preserve ZFC,
we first isolate the first-order property of tameness, necessary and sufficient for
this preservation. After mentioning four basic examples, we discuss the question
of relevance of class forcing, before turning to the most important technique in
the subject, the technique of Jensen coding. Armed with these ideas we then
proceed to describe the solutions to the Solovay problems. We next discuss
Generic Saturation, a concept which helps to explain the special role of 07 in
this theory. We end by briefly describing some other applications.

For the deeper study of class forcing, including the many proofs omitted here,
we refer the reader to Friedman [99].

1. Three Problems of Solovay

Solovay’s three problems each demand the existence of a real that neither
constructs 0%, nor is attainable by forcing over L.

DEFINITION. If z,y are sets of ordinals then we write z < y for z € L[y] and
x<pyforz<pyyfLe
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Genericity Problem. Does there exist a real R <z 0% such that R does not
belong to a generic extension of L7

It was to affirmatively answer this question (when “generic” is interpreted to
mean “set-generic”) that Jensen proved his Coding Theorem. Roughly speaking
he showed that if G is generic for Easton forcing at Successors, the L-definable
class forcing that adds a x-Cohen subset to x for each L-successor cardinal k,
then there is a real R < 0%, obtained by class forcing over (L[G],G), such
that L[G] C L[R] and G is definable over L[R]. Then R does not belong to a
set-generic extension of L as L[G] is not included in any such extension.

Solovay’s second problem concerns definability of reals.

DEFINITION. R is an Absolute Singleton if for some formula ¢, R is the
unique solution to ¢ in every inner model containing R.

Shoenfield’s Absoluteness Theorem states that if ¢ is I3 (i.e., of the form
V R3 S, 9 arithmetical) then p(R) «— M F ¢(R) where M is any inner model
containing R. Thus any II}-Singleton (i.e., unique solution to a II} formula) is
an Absolute Singleton; 07 is an example. Also 0 is trivially an example. Solovay
asked if there are in a sense any other examples.

I1}-Singleton Problem. Does there exists a real R, 0 <; R < 0% such that R
is a I13-Singleton?

Suppose that R is set generic over L. Then it can be shown that R belongs to
a P-generic extension of L, where there are only countably-many constructible
subsets of P, and therefore we can build a P-generic containing any condition
in P. So we conclude that if R is nonconstructible and set-generic over L then
R cannot be a IIi-Singleton, as there must be other P-generic extensions with
reals R’ # R satisfying any given I} formula satisfied by R. This is why the
I13-Singleton Problem requires Jensen’s method: an affirmative answer to the
I1}-Singleton Problem implies an affirmative answer to the Genericity Problem
(for set-genericity).

Solovay’s third problem concerns Admissibility Spectra. Let 7" be a subtheory
of ZFC and R a real. The T-spectrum of R, Ar(R), is the class of all ordinals «
such that L,[R] F T. A general problem is to characterize the possible T-spectra
of reals for various theories 7. An important special case is where ' = Ty = (ZFC
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without the Power Set Axiom and with Replacement restricted to ¥; formulas).
We may refer to this as “admissibility theory,” as an ordinal « is R-admissible
if and only if it is either w or belongs to the Ty-spectrum, or Admissibility
Spectrum, of R. We denote the latter by A(R).

There are some basic facts which limit the possibilities for A(R): First, if R
belongs to a set-generic extension of L then A(R) contains A — 3 for some ordinal
B, where A = A(0). This is because if « € A, P € L, then L,[G] F T, for
P-generic G. Second, if 0# <; R then A(R) — 3 C L-inaccessibles for some
B. This is because if 0# € Lg[R] then every a in A(R) — (3 is in A(0%) and

hence is a “Silver indiscernible,”

an ordinal which is very large (and in particular
inaccessible) in L.

Thus to get a nontrivial admissibility spectrum for R without 0% we need
Jensen’s methods. An ordinal is recursively inaccessible if it is admissible and

also the limit of admissibles.

Admissibility Spectrum Problem. Does there exist a real R <; 0% such that
A(R) = the recursively inaccessible ordinals?

Of course we must in fact have R <y, 0% as otherwise A(R) is too thin.

Before we can say more about the solutions to the Solovay problems, we must
first develop the basic theory of class forcing, to which we turn next.

2. Tameness

We want our class forcings to preserve ZFC. First we isolate a first-order
condition that guarantees this.
DEFINITION. A ground model is a structure (M, A) where:

(a) (M, A) is a transitive model of ZFC; i.e., M is a transitive model of ZFC and
Replacement holds in M for formulas mentioning A as a unary predicate.
(b)) MEV =L(A)=U{L(ANV,) | a € ORD}.

(b) guarantees that if M C N E ZFC then M is definable over (N, A).
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Suppose G C P where P is an (M, A)-forcing, i.e., a pre-ordering (reflexive,
transitive relation) with greatest element 17, definable over (M, A). G is P-
generic over (M, A) if G is compatible, upward-closed and GN D # () whenever
D C P is dense and (M, A)-definable.

For any G C M we define M[G] as follows: A name is a set 0 € M whose
elements are of the form (7,a), 7 a name and a € M (defined inductively).
Interpret names by: ¢¢ = {7% | (,a) € o for some a € G}. Then M[G] = {c€ |
o aname}. A P-generic extension of (M, A) is a model (M[G], A, G) where G
is P-generic over (M, A). P is an M-forcing if it is an (M, A)-forcing for some
A. A generic extension of M is a model (M[G], A, G) for some choice of A, P
and of G P-generic over (M, A). X C M is generic over M if X is definable in
a generic extension of M.

Set forcings always preserve ZFC but class forcings in general do not. Fix a
ground model (M, A) and (M, A)-forcing P. P is ZFC preserving if (M[G], A, G)
is a model of ZFC for all G which are P-generic over (M, A). For countable M
there is a useful first-order property equivalent to ZFC preservation, called tame-
ness, that we now describe. First we consider ZFC — Power:

DEeFINITION. D C P is predense < p € P if every q < p is compatible with
an element of D. ¢ € P meets D if g extends an element of D. P is pretame
if whenever p € P and (D; | i € a), a € M is an (M, A)-definable sequence of
classes predense < p there exists ¢ < p and (d; | i € a) € M such that for each
1 €a,d; C D; and d; is predense < q.

ProPOSITION 2.1. Suppose that M is countable and P is ZFC — Power preserv-
ing. Then P is pretame.

PROOF. Given (D; | i € a) and p as in the statement of pretameness choose G
such that p € G, G P-generic over (M, A) and consider f(i) = least rank of an
element of G N D;. If pretameness failed for p, (D; | i € a) then for every ¢ < p
and o € ORD(M) there would be r < ¢ and ¢ € a with 7 incompatible with
each element of D; N V,. But then by genericity, no ordinal of M can bound
the range of f, so replacement fails in (M[G], A,G, M). As (M, A) is a ground
model, replacement fails in (M][G], A, G). =

PROPOSITION 2.2. Suppose that P is pretame, P-forcing is definable (for each
formula ¢, the relation p I (o1 ...0,) of p, 01,... ,0, is (M, A)-definable) and
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the Truth Lemma holds for P-forcing (for G P-generic over (M, A), (M[G], A, G) F
e

0(0f...0%) iff Ipe G,pl- ¢(01...0,)). Then P is ZFC — Power preserving.
PROOF. Suppose that G is P-generic over M. As M|G] is transitive and contains
w, it is a model of all axioms of ZFC — Power with the possible exception of
pairing, union and replacement.

For pairing, given 0¥, 0§ consider o = {(01, 1F), {02,1F)}. Then ¢¢ = {c¢, 0§ }.

For replacement, suppose f : ¢ — M][G], f definable (with parameters) in
(M[G], A, G) and by the Truth Lemma choose p € G, p I f is a total function on
o. Then for each o of rank < ranko, D(o¢) = {q | For some 7, ¢ I 09 € 0 —
f(oo) = 7} is dense < p. Thus by the Definability of P-forcing and pretameness
we get that for each ¢ < p there is r < ¢ and o € ORD(M) such that D,(og) =
{s | s € V,, and for some 7 of rank < a, s IF 09 € 0 — f(0¢) = 7} is predense
< r for each o of rank < ranko. By genericity there is ¢ € G and a € ORD(M)
such that ¢ < p and D,(0y) is predense < g for each oy of rank < ranko. Thus
Range(f) = 7% where m = {(r,7) | rank7T < a,r € V,,r I 7 € Range(f)}. So
Range(f) € M[G].

For union, given ¢

consider # = {(7,p) | p|F 7 € Uo}. This is not a set, but
for each a we may consider 7, = 1NV, By Replacement in (M[G], A, G), ¢ is
constant for sufficiently large @ € ORD(M). For such o we have 7¢ = Uos%. A

Thus the work in establishing the equivalence (for countable M) of ZFC — Power
preservation with pretameness resides in:

LEMMA 2.3. (Main Lemma) If P is pretame and M is countable then P-forcing
is definable and the Truth Lemma holds for P-forcing.

PROOF. We define a relation IF¥, prove the lemma for I and finally show IF=IF.

DEFINITION (of IF). We say that D C P is dense < p if Vg < p3r(r < ¢,r €
D).

(
(
(
(
(e

pIFo € 7iff {g| I(n,r) € 7 such that ¢ < r,q IFo = 7} is dense < p.
plFo=r1ifffor all (m,7) coUT, pIF(nr €0 +— meET).

a)
)

c) plFp A iff plFp and pIFy.
)
)

=3

oL

pIF ~ ¢ iff Vg < p(~ g IFp).
p IFVz o iff for all names o, p IFp(0).

Note that circularity is avoided in (a), (b) as max(rank o, rank 7) goes down
(in at most three steps) when these definitions are applied.
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SUBLEMMA 2.4. (a) pIFp,q <p— qIFp.
(b) If {q | q ¥} is dense < p then p IFp.
(c) If ~ p P then 3¢ < p (q IFF ~ o).

PROOF OF SUBLEMMA 2.4. (a) Clear, by induction on ¢, as dense < p —
dense < q.

(b) Again by induction on ¢. The proof uses the following facts: if {q | D is
dense < ¢} is dense < p then D is dense < p; if {q | ¢ IF ~ ¢} is dense < p
then Vg < p(~ ¢ IF¢p), using (a).

(c) Immediate by (b).

_|

SUBLEMMA 2.5. (Definability of IF¥) For each formula , the relationp IFp(oy - - - 0,,)
of p,oy,... 0, is (M, A)-definable.

PROOF OF SUBLEMMA 2.5. It suffices to show that the relations p IFo € 7 and
p IFo = 7 are (M, A)-definable. Note that by modifying A if necessary, we may
assume that the relations “z = VM " “p q are compatible,” “d is predense below
p,” as well as (P, <), are A;-definable over (M, A).

Using pretameness we shall define a function F' from pairs (p,o € 7), (p,0 = T)
into M such that:

(a) F(p,o € 7) = (i,d) where ) #d € M,d C P, q € d — q < p and either
(i=1and ql¥o €1 forall g€ d) or(i=0and qlFo ¢ 7 for all g € d).

(b) The same holds for ¢ = 7, 0 # 7 instead of 0 € 7,0 ¢ 7.

(c) F is ¥;-definable over (M, A).

Given this we can define p o € 7 by: p IFo € 7 iff for all ¢ < p, F(q,0 €
7) = (1, d) for some d. This definition is correct because Lemma 2.4 gives us that
plFo e +— {q|qI¥o € 7} is dense < p. Similarly for p IFo = 7.

Now define F' by induction on ¢ € 7, 0 = 7. We consider the cases separately.

o € 1: Given p, search for (m,7) € 7 and ¢ < p, ¢ < r such that F(q,0 =

7) = (1,d) for some d. If such exist, let F(p,c € 7) = (1,e) where e is the
union of all such d which appear by the least possible stage « (i.e., this 3;
property is true in (VM ANVM) o least). If not then U{d | For some g <
r,F(q,0 =7m) = (0,d)} U{q | ¢ is incompatible with 7} = D(x,r) is dense
below p for each (m,r) € 7. So also search for (d(m,r) | (m,r) € 7) € M and
g < p such that d(m,r) C D(n,r) for each (m,r) and each d(m,r) is predense
< g; if this latter search terminates then set F(p,0 € 7) = (0,¢), where e
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consists of all such g witnessed by the least possible stage . One of these
searches must terminate (by pretameness) and hence F(p,o € 7) is defined
and either of the form (1,e) where ¢ € e — ¢ < p, ¢ IFo € 7, or of the
form (0,¢e) where ¢ € e — ¢ < p,q IFo ¢ 7.

o = 1: Given p, search for (m,r) € 0 Ut and ¢ < p,r such that F(q,7 € o) =
(i,d),qd € d,F(q',m € 7) = (1 — i,e) and if this search terminates then set
F(p,oc = 1) = (0, f) where f is the union of all such e which appear by
the least possible stage a. If this search fails then for each (m,r) € c U T,
D(m,r) = U {e | For some q < p, some ¢,d,i, F(q,7 € o) = (i,d),q € d,
F(¢,me1)=(i,e)} U{q | ¢ is incompatible with r} is dense < p. So also
search for (d(m,r) | (w,r) € cUT) € M and ¢ < p such that for each (7, r) €
oUr, d(m,r) C D(m,r) and d(m,r) is predense < g¢. If this latter search
terminates then ¢ Io = 7 for all such ¢ and let F(p,o = 7) = (1, f), where
f consists of all such ¢ witnessed to obey the above by the least stage . One
of these searches must terminate (by pretameness) and hence F(p,o = 7) is
defined and either of the form (0, f) where ¢ € f — ¢ < p,q IFo # 7, or of
the form (1, f) where ¢ € f — ¢ < p,q IFFo = 7.

_|

Now that we have the definability of I* we can prove:

SUBLEMMA 2.6. For G P-generic over M:
MG F ¢(0c¢...0%) «— Ip € Gp IFp(oy...0,)).

PRrROOF OF SUBLEMMA 2.6. By induction on ¢.

o € 7(—): If 0% € 7€ then choose (m,7) € T such that 0% = 7€ and r € G.
By induction we can choose p € G, p < r, p IFo = 7. Then p IFo € 7.
(«—) Ifp € G,{q | Im,7) € T such that ¢ < 7, ¢ IFo = 7} = D is dense
< p then by genericity we can choose ¢ € G, (m,r) € 7 such that ¢ < r,
g IFo = 7; then by induction ¢¢ = 7% and as r > ¢ € G we get r € G and
hence by definition of 7¢, 7% € 7¢. So ¢ € €.

o = 7(—): Suppose 0¢ = 7¢. Consider D = {p | Either p F'¢ = 7 or
for some (m,7) € o UT, pI¥ ~ (1 € 0 < 7 € 7)}. Then D is dense,
using the definition of p Io = 7 and Lemma 2.4(c). By genericity there
is p € G N D and by induction it must be that p o = 7. (+—) Suppose
p € G, p e = 7. Then by induction, 7¢ € ¢¢ +— 7% € 7€ for all
(m,7) € UT. So 0% = 7€,
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¢ A1z Clear by induction, using the fact that p,q € G — Ir € G(r < p and
r <q).

~ ¢ Clear by induction, using the density of {p | p I#p or pIF ~ }.

Vap(—): Suppose M[G] F Vzyp. As in the proof of (—) for o = 7, there is
p € G such that either p IFVzyp or for some o,p I ~ ¢(o). By induction
the latter is impossible so p IFVz . («—) Clear by induction.

_|
SUBLEMMA 2.7. I = |-,

PROOF OF SUBLEMMA 2.7. By Sublemma 2.6, p IFp(0;...0,) — plF p(01 ... 0,).
And ~ plIFp(0y...0,) — qIF ~ @(0y . ..0,) for some ¢ < p (by Sublemma 2.4(c))
—~plk (o ...0,) using the countability of M to obtain a generic G, p € G.

_|

This completes the proof of Lemma 2.3. -

P is tame if P is pretame and in addition 17 I Power. The latter is first-order
for pretame P as pretameness yields the definability of P-forcing. By the Truth
Lemma for P-forcing we get:

THEOREM 2.8 (Stanley, M. [97], Friedman [99]). (Tameness Theorem) Suppose
that M is countable. Then P is ZFC preserving iff P is tame.

3. Examples

We next discuss the four basic examples of tame class forcings, which serve as
prototypes for more complex examples, such as Jensen coding. In each of these
basic examples we take the ground model to be (L, ().

Easton Forcing

A condition in P is a function p : a(p) — L where a(p) € ORD and p(a) = 0
unless « is infinite and regular, in which case p(a) € 2<* = {f | f: 8 — 2 for
some 3 < a}. We also require Easton Support which means that {8 < « |
p(B) # 0} is bounded in « for inaccessible a. For any a, p(< «) denotes p | [0, o]
and p(> «) denotes p [ (, a(p)).
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PRroPOSITION 3.1. P is tame and preserves both cofinalities and the GCH.

PROOF. First we verify pretameness. Suppose p € P, (D; | ¢ < k) is an L-
definable sequence of classes predense < p and k is regular. Let (¢; | ¢ < k)
list all elements of P(< k) = {¢(< k) | ¢ € P}, using the Easton support
requirement. View each ¢ < k as a pair (ig,%;) and define pg = p; p;+1 = least
r < p; such that (< k) = p;(< k) and ¢;, Ur(> k) is a condition meeting some
r; € D;,, if possible (p;+1 = p; otherwise); py = U{p; | i < A} for limit A < k.
Then p* = p,, < p has the property: if » < p* meets D; then r extends r; for some
Jj < k. Thus d; = {r; | r; € D;} is predense < p* for each %, proving pretameness.

To verify the remaining properties we may use:

LEMMA 3.2. (Product Lemma) Suppose that P = Py x P, where P, P, are
(M, A)-definable.

(a) Go Py-generic over (M, A), Gy Py-generic over (M[Gy|, A, Go) — Go x Gy is
P-generic over (M, A).

(b) G P-generic over (M,A) — G = Gy x G, where Gy is Py-generic over
(M, A). If in addition Py-forcing is definable then G, is P;-generic over
(M[Gol, A, Go)-

PRrROOF. (a) Suppose that D C P is dense and (M, A)-definable. Then D; =
{p1 | Ipo € Go (po,p1) meets D} is (M[Go|, A, Go)-definable; we claim that
it is dense on P;: given p; € P, form Dy(p1) = {po | (po,p}) meets D for
some pj < p1}. Then Dgy(p;) is dense since D is, so Go N Dy(p1) # 0. Thus
(po, p}) meets D for some pg € Gy, some pj < p; and therefore p| is an
extension of p; in D;.

As D is dense we can choose p; € G1ND; and so we get (po,p1) € Gox Gy,
(po, p1) meets D. As G X G; is compatible and closed upwards (since Gy, G1
are) we have shown that Gy x G; is P-generic over (M, A).

(b) Let Go = {po € Py | (po,p1) € G for some p1}, G1 = {p1 | (po,p1) € G for
some po}. Clearly G C Gy x G and conversely if (pg,p1) € Go X G7 then
(o, p1) is compatible with every element of G and hence by genericity of G,
(po,p1) € G. If Dy C P, is dense and (M, A)-definable then D = {(pg,p1) |
po € Do} C P is dense and (M, A)-definable and since G meets D, we get
that Gy meets Dy. So Gy is Py-generic over (M, A), as compatibility and
upward closure for G follow from these properties for G.
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Suppose that Dy C P; is (M[Gy], A, Go)-definable and dense. Then D =
{(po,p1) | po I p1 € D1} is (M, A)-definable by the definability of Py-forcing
(where “p; € D;” is expressed using a defining formula for D;). Also D is
dense < (po, p1) provided pg IF D; is dense. As Gy is Py-generic over (M, A)
we can choose pg € Gy, po IF D, is dense and then the genericity of G over
(M, A) produces (py,p1) € G, py IF p1 € Dq; then p; € Gy N Dy and as
compatibility, upward closure for GG; are clear, we have shown that G; is
P,-generic over (M[Gy), A, Gy).

_|

In the case of Easton forcing, P ~ P(> k) x P(< k) where P(> k) = {p(>
k) | p € P}L,P(< k) = {p(< k) | p € P} and if G is P-generic then L[G] =
LIG(> k)][G(< k)]; (b) applies as P(> k) is pretame and hence P(> k)-forcing
is definable. As P(> k) is < k-closed and for regular k, P(< k) has cardinality
k (by Easton support) we get the preservation of “cof > k” for regular x and
hence all cofinalities are preserved. And we have that for regular x any subset of
k in L[G] belongs to L|G(< k)]. As G(< k) is equivalent to a subset of &, the
GCH follows at regular k. For singular x we get P(k) = P (k) in L[G(< k)] and
hence 2% = 2% in L[G(< k)] = k™. -

Long Easton Forcing

We drop the Easton support requirement. For successor cardinals k we still
have that P(< k) has cardinality k, P(> k) is < k-closed, so the previous
arguments show us that P is tame, “cof > k” is preserved for successor cardinals
k and the GCH is preserved. But not all cardinals need be preserved. A cardinal
k is Mahlo if it is inaccessible and in addition {& < k | « inaccessible} is
stationary in k.

THEOREM 3.3. If k is Mahlo then " is collapsed by P; otherwise k" is pre-
served.

PROOF. Let G = (G, | « infinite, regular) be P-generic. For each o < k consider
A, C K defined by: 8 € A, +— a € Gg.

CLAIM. Suppose k is Mahlo. Then {4, | a < k} C L but for no v < (x*) do
we have {A, | a <k} C L,.
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PrRoOOF oF CLAIM. For any a < k and condition p, we can extend p to g so that
a < Rk < K,k regular — p(%) has length greater than . Thus A, is forced to
belong to L.

Given 7 < (k")F and a condition p, define f(k) = length(p(k)) for regular
K < k. As k is Mahlo, f has stationary domain and hence by Fodor’s Theorem
we may choose a < k such that length(p(g)) is less than « for stationary many
regular & < k. Then p can be extended so that A, is guaranteed to be distinct
from the x-many subsets of k in L,. - (Claim)

Thus k7 is collapsed if x is Mahlo. Conversely, if x is not Mahlo, then choose
a CUB C C k consisting of cardinals which are not inaccessible (we may assume
that x is a limit cardinal). Suppose that (D, | @ € C) is a definable sequence
of dense classes. Given p we can successively extend p(> at),a € C so that
{¢ < p| q,p agree > a*,q € D,} is predense < p. There is no difficulty in
obtaining a condition at a limit stage less than k precisely because conditions are
trivial at limit points of C. Thus we have shown that P(< k) x P(> k) preserves

k1

as k-many dense classes can be simultaneously reduced to predense subsets
of size < k. Finally P ~ P(< k) X P(> k) x P(k) and P(k) preserves k* as it
has size k.

_|

The previous proof shows that full cofinality preservation is obtained if we
consider Long Easton forcing at Successors, where k-Cohen sets are added only
for infinite successor cardinals k. We shall consider this and other variants of
Long Easton forcing in the next section, on Relevant Forcing.

Reverse Easton Forcing

We consider the iteration defined by: P(0) = {0}, the trivial forcing; P(<
a) = P(< a) x P(a) where P(«) is the trivial forcing unless « is infinite, regular
in which case P(a) = 2<* = a-Cohen forcing; for limit A\, P(< A) = Direct Limit
(P(< @) | @ < A) for A regular and P(< A) = Inverse Limit (P(< a) | o < A)
for A singular. (Thus Easton supports are being used.) Let P = Direct Limit
(P(< @) | « € ORD).

PROPOSITION 3.4 (Section 2.3 of Friedman [99]). (a) k regular — P(< k) has
a dense suborder of size k.
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(b) For a < 8 < 00, P(< ) ~ P(< a) * P(a, 3) where P(a,3) is the natural
Reverse Easton iteration of y-Cohen forcings, a < v < 3, defined in L|G(<
a)l.

(c) & regular - P(< k) IF P(k,00) is < k-closed.

It follows that P = Direct Limit (P(< «) | « € ORD) is tame and preserves
cofinalities and the GCH.

Amenable Forcing

P consists of all p: @ — 2, ordered by extension. P is < k-closed for all x and
hence tame. Cofinality and GCH preservation are trivial as P adds no new sets.

4. Relevance

Which L-forcings have generics?

PROPOSITION 4.1. There exist tame L-definable forcings P,, P, such that not
both P, and P; have generics.

PRrOOF. For any ordinal «, let n(a) be the least n such that L, is not a model
of X,-replacement, if such an n exists. Let So = {a | n(a) exists and is even}.
P, consists of all closed p such that p C Sy, ordered by p < q iff ¢ is an initial
segment of p.

Note that Sy is unbounded in ORD: Given «, let 8 be least such that 8 > «,
Ls F ¥;-Replacement. Then n(8) = 2so 8 € Sp. If Gy C Py is Py-generic
over L then UG is therefore a closed unbounded subclass of ORD contained in
Sg. To show that P, is tame, it suffices to show that it is x*-distributive for
every L-regular x : If (D; | i < k) is an L-definable sequence of classes dense
on Py and p € P, then choose n odd so that (D; | i < k) is ¥, definable and
choose (o; | i < k) to be first k-many « such that L, is X,-elementary in L and
k,p,z € L, where z is the defining parameter for (D; | i < k). We can define
p>po > p1 > ... sothat p;iq meets D; and Up; = ¢, using the ¥, -elementarity
of L, in L. As n(e;) =n+ 1 and n + 1 is even, we have no problem in defining
pa to be U{p; | i < A} U {ay} for limit A < k and we see that ¢ = p, < p meets
each D;,.
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Now define P; in the same way, but using S; = {a | n(«) is defined and odd}.
Then P, is also tame yet if Gy, G; are Py, P;-generic over L (respectively) then
UGg, UG are disjoint CUB subclasses of ORD. -

So we need a criterion for choosing L-definable forcings for which we can have
a generic. Our approach is to isolate a “property of transcendence” (#) such
that:

(a) In tame class-generic extensions of L, (#) fails.
(b) If (#) is true in V then there is a least inner model L(#) satisfying (#).

Then our criterion for generic class existence is: P has a generic iff it has one
definable over L(#).

DEFINITION. An amenable (L, A) is rigid if there is no nontrivial elementary
embedding (L, A) — (L, A). L is rigid if (L, () is rigid.

We take (#) to be: L is not rigid. First we discuss property (b) above, i.e.,
that there is a least inner model in which L is not rigid (if there is one at all).

THEOREM 4.2 (Kunen, Silver [71], Solovay [67]). Suppose L is not rigid. Then
there is a unique CUB class I of L-indiscernibles which generate L in the sense
that L = Hull(I), where Hull denotes Skolem Hull in L. Moreover I is unbounded
in every uncountable cardinal and if 0% = First-Order theory of (L, €,iy,1s,...)
(where the first w elements i1,1s,... of I are introduced as constants) then we
have the following:

(a) 0% € L[I], T is A;(L[0%]) in the parameter 0% and I is unbounded in «
whenever L,[07] E ¥, replacement.

(b) 0%, viewed as a real, is the unique solution to a 11} formula (i.e., a formula
of the form Yx3y, where x,y vary over reals and v is arithmetical).

(c) If f : I — I is increasing, f # identity then there is a unique j : L — L
extending f with critical point in I, and every j : L — L is of this form.

(d) If (L, A) is amenable then A is A{(L[0%]), (L, A) is not rigid and a final
segment of I is a class of (L, A)-indiscernibles.

Remarks. (i) As I is closed and unbounded in every uncountable cardinal it
follows that every uncountable cardinal belongs to I and 0# = First-Order
theory of (L, €,w1,ws, ... ).

(i) The X}-absoluteness of L (Shoenfield [61]) implies that the unique solution
to a X1 formula is constructible; so in a sense (b) is best possible.
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(iii) I is a class of strong indiscernibles: if 7,7 are increasing tuples from I of the

same length and & < min(7), min(7) then for any ¢, L E ¢(z, 1) +— o(z, ).

In case the conclusion of Theorem 4.2 holds (i.e. in case L is not rigid) we

say that “0% exists” and refer to I as the Silver Indiscernibles. Note that

Theorem 4.2 implies that if L is not rigid then L[0#] is the smallest inner model

in which L is not rigid, verifying that “L is not rigid” obeys condition (b) of our
property of transcendence (#).

Before turning to condition (a) of property (#) we mention Jensen’s Covering
Theorem and some of its consequences. A set X is covered in L if there is a
constructible Y such that X CY, CardY = Card X.

THEOREM 4.3 (Jensen, in Devlin-Jensen [75]). Suppose there exists an uncount-
able set of ordinals which is not covered in L. Then 0% exists.

For proofs of Theorems 4.2, 4.3 see Section 3.1 of Friedman [99].

Using the Covering Theorem, we see that the existence of 0% takes many
equivalent forms.

THEOREM 4.4. Each of the following is equivalent to the existence of 0%:
(a) L is not rigid.
(b) (L, A) is not rigid for every A such that (L, A) is amenable.

Some uncountable set of ordinals is not covered in L.

Some singular cardinal is regular in L.

kT # (k*)L for some singular cardinal k.

unbounded subset of w;.
(g) {a| a is an L-cardinal} is A;-definable with parameters.
(h) There exists j : Lo — Lg, crit(j) = k, k" < o
(i) There exists j : Lo — Lg, crit(j) = &, (¢7)! < a,a > ws.

PRroOOF. It is straightforward to show that these all follow from the existence of
0#; using Theorem 4.2. Also (a), (b) imply the existence of 0% by Theorem 4.2.
Conditions (d), (e) each easily imply (c), and we get 0% from (c) via Theorem 4.3.
Condition (f) implies (a), since we get an elementary embedding L — L ~
Ult(L,U) = Ultrapower of L by U, where U consists of all constructible subsets
of w; containing a closed unbounded subset. (g) implies that (k7)f < k* for & a
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sufficiently large cardinal; by taking x singular we get 07 via condition (e). To
see that (h) implies the existence of 0%, define an ultrafilter U on constructible
subsets of k by: X € U iff k € j(X). Then Ult(L,U) is well-founded, for if
not then by Lowenheim-Skolem there would be an infinite descending chain in
Ult(L.+,U) which contradicts ™ < a.

Finally we show that (i) implies the existence of 0%. Define U as before by:
X e U iff k € j(X). First suppose that « is at least wy. We shall argue that U
is countably complete, i.e. that if (X,, | n € w) belong to U then N{X,, | n € w}
is nonempty. (This gives 07 as it implies that Ult(L, U) is well-founded.) By the
Covering Theorem 4.3, there is F' € L of cardinality w; such that X, € F for
each n. Then as we have assumed that Kk > ws, F' has L-cardinality less than k.
We may assume that F is a subset of P(x) N L, and hence as « is an L-cardinal,
F belongs to L, and there is a bijection h : F' +— ~ for some v < k,h € L,. But
then F* = {X € F | k € j(X)} belongs to L, as X € F* +— k € j(h™')(h(X))
and F™* has nonempty intersection as j(F*) = Range(j [ F*) and k € Nj(F™).
Thus {X,, | n € w} has nonempty intersection since it is a subset of F*. If k is
less than w, then we have o > wy > k™ so we have a special case of (h). -

The next theorem verifies (a) of transcendence property (#).

THEOREM 4.5 (Beller (in Beller-Jensen-Welch [82]), Friedman [99]). Suppose that
G is P-generic over (L, A) and P is tame. Then L|G] |= 0% does not exist.

PROOF. Suppose pg € P,py I I = Silver indiscernibles is unbounded, i < j
in I — L; < L;. Suppose that p < po,p IF & € I. Then L, < L as this
is true in any P-generic extension (L[G], A, G),p € G. (By Lowenheim-Skolem
we can assume that such a G exists for the sake of this argument.) Thus an
L-Satisfaction predicate is definable over (L, A) as L = ¢(z) iff for some p € P
below pg, some o with x € L,,p IF ¢(%) is true in L,. This is a contradiction
if A = (), for then L-satisfaction would be L-definable. But note that for any
A such that (L, A) is amenable we can apply the same argument, using the fact
that by Theorem 4.2(d), (Lo, AN Ly) < (L, A) for o in a final segment of 1.

DEFINITION. A forcing P defined over a ground model (L, A) is relevant if
there is a G P-generic over (L, A) which is definable (with parameters) over

L[07#].
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Examples of Relevance

Assume that 07 exists. Then any L[0%]-countable P € L is relevant, as there
are only countably many constructible subsets of P (using the fact that w, is
inaccessible in L). Note that this includes the case of any forcing P € L definable
in L.

The situation is far less clear for uncountable P € L. The next result treats
the case of k-Cohen forcing.

PROPOSITION 4.6. Suppose & is L-regular and let P(k) denote k-Cohen forcing
in L: conditions are constructible p : « — 2, a < k and p < q iff p extends q.

(a) If k has cofinality w in L[0¥] then P(k) is relevant.
(b) If k has uncountable cofinality in L[0#] then P(k) is not relevant.

PROOF. Let j, denote the first n Silver indiscernibles > k.

(a) We use the fact that P(k) is k-distributive in L. Let ko < k1 < ... be
an w-sequence in L[0%] cofinal in k. Then any D C P(k) in L belongs to
Hull(k, U j,) for some n, where Hull denotes Skolem hull in L. As Hull(k,U
Jn) is constructible of L-cardinality < x we can use the x-distributivity of
P(k) to choose pg > p; > ... successively below any p € P(k) to meet all
dense D C P(k) in L.

(b) Note that in this case x € Lim I, as otherwise k = U{k,, | n € w} where k,, =
U(kNHull(8+1U3,)) < k, & = max(I Nk), and hence x has L[0%]-cofinality
w. Suppose G C P(k) were P(k)-generic over L. For any p € P(k) let a(p)
denote the domain of p. Define py > p; > ... in G so that a(p,.1) € I and
pni1 meets all dense D C P(k) in Hull(a(p,)Uj,). Then p = U{p, | n € w}
meets all dense D C P(k) in Hull(a U j) where o = U{a(p,) | n € w} € I,
Jj = U{jn | n € w}. But then p is P(a)-generic over L, as every constructible
dense D C P(a) is of the form D N P(a) for some D as above. So p is not
constructible, contradicting p € G.

_|

As a consequence of Proposition 4.6(b) we see that the basic class forcing
examples of Easton and Long Easton forcing are not relevant. However, we can
rescue these forcings by restricting to successor cardinals, thereby not adding
k-Cohen sets for x of uncountable L[0%]-cofinality.



18 SY D. FRIEDMAN

THEOREM 4.7. Let P be Easton forcing at Successors: conditions are con-
structible p : a(p) — L where p(a) = 0 unless « is a successor cardinal of L,
in which case p(a) € a-Cohen forcing; we also require that if o is L-inaccessible
then {8 < a | p(B) # 0} is bounded in « and define p < q iff p(a) extends g(c)
for each o < a(q). Then P is relevant.

PROOF. By induction on i € I = Silver indiscernibles we define G(< %) to be
P(< i)-generic over L, where P(< i) = Easton forcing at Successors restricted
to L;. For i = minT take G(< i) to be any P(< i)-generic (note that P(< %) is
countable in L[0%]). If G(< i) has been defined we now define G(< i*) as follows
(where i < i* are adjacent in I) : P(< i*) factors as P(< i) x P(i,i*) where
P(i,1*) is iT-closed in L, so it suffices to define a P(i,:*)-generic G(%,¢*) and then
G(< i*) = G(< 1) x G(i,1*); is P(< *)-generic. To obtain G(i,7*), successively
choose pg > p; > ... in G(%,7*) so that p,.; meets all dense D C P(i,7*) in
Hull(7U j,) where j,, = first n Siver indiscernibles > i. Then {p | p > p, for some
n} = G(i,1*).

Finally if ¢ € Lim7, let G(< i) = U{G(< j) | 4 € I ni}. Note that if
D C P(< i) is dense and constructible then for some j € I Ni, DN P(< j) is
dense and constructible and hence is met by G(< j) C G(< 7). So G(< 1) is
P(< i)-generic. Similarly, G = U{G(< i) | ¢ € I} is P-generic over L (and in fact
meets all L-amenable dense D C P). -

Reverse Easton Forcing is relevant, without restriction.

THEOREM 4.8. Let P be the basic example of Reverse Easton forcing. Then P
is relevant.

PROOF. Recall that P(< «) has a dense subset of L-cardinality < (a*)% for each
a. By induction on i € I we define G(< i) = G(< i) * G(i) to be P(< i)-generic
over L, where P(< i) = P(< ) % P(i), the first ¢ + 1 stages in the iteration
defining P. We will have: i < j in I — G(j) extends G(i); this will enable us to
get through limit stages. For ¢ = min I, take G(< ¢) to be any P(< 7)-generic in
L[0#]. If G(< i) has been defined and i* = I-successor to i, then write P(< i*) as
P(<4)*P[i+1,:*) and as P(< i) IF P[i+1,*) is i -closed we can select G[i+1,7*)
to be P[i+1,i*)%(<9)_generic over L[G(< 4)] (the collection of dense sets that must
be met is the countable union of subcollections of size ¢ in L[G(< )], using the
Hull(7 U j,)’s as in the previous proof). Then G(< *) = G(< i) * G[i + 1,i*)
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is P(< i*)-generic over L. We also choose G(i*) to be P(i*)%(<")_generic over
L[G(< 1*)], extending the condition G(z) in this forcing.

For ¢ € LimI take G(< ¢) to be U{G(< j) | j € I Ni}, as in the previous
proof G(< 1) is P(< i)-generic over L. And we take G(i) = U{G(j) | 7 € I Ni},
which by our construction extends each G(j), 7 € I Ni. Again we get genericity
for G(< i) from that of G(< j), j € I N4, as G(< i), G(i) extend G(< j), G(j)
respectively for each j € I Ni. -

Before turning to Long Easton forcing at Successors (obtained from Eas-
ton forcing at Successors by dropping the support condition that {8 < a | p(8) #
0} be bounded in « for L-inaccessible «), we establish the relevance of Thin Eas-
ton forcing at Successors. The latter is obtained by weakening the support
condition in Easton forcing at Successors to: {8 < a | p(87) # 0} is nonstation-
ary in « for L-inaccessible a.

THEOREM 4.9. Let P be Thin Easton forcing at Successors. Then P is relevant.

PROOF. Factor P as P(< ) x P(> 7) for each L-cardinal +; if y is a limit L-
cardinal then P(< ) can be identified with P(< 7). Let ¢ be any indiscernible
and for any n let j, be the first n indiscernibles > i. We can define pj, > p? > ...
in P(< 4%) such that if D C P(< i") is dense and belongs to Hull(y* U j,)
then p_, reduces D below v+ for any L-cardinal vy < i. This is possible by
successively extending on [y*",i"] (without violating the nonstationary support
requirement). Let G{ = {p € P(< ") | p > p¢, for some n}.

G{ is not P(< it)-generic over L as p € Gi — p(j+) = 0 for all j € I Ni.
Notice that for ig < i1 < -+ < i, < i in I, Gé" U---u Gf," is a compatible set
of conditions. We take G(< i) = {p € P(<i") | p > qo A -+ A g, for some
q € Gilig < -+ < i, <iin I'}. Now we claim that G(< it) is P(< it)- generic
over L. Indeed if D C P(< i) is dense and belongs to Hull({ko, ..., km} U jn)
with ko < -+ < k,, < in I then p,_, reduces D below k;f,, i, ., A pim, reduces
D below k;,_;,... and eventually we get pi, ., Apkm, A--- ApFo o in G(L i)
meeting D.

Now note that in the above we could have chosen our initial p) € P(< 1)
to reduce every dense D C P(< i) = PN L; in Hull(y" U {i}) below y*, for
any v < i. Thus the resulting generic G(< i) meets every dense D C P(<K 1)
definable over L;. Now let G = U{G(< i") | ¢ € I} and we see that G is P-generic
over L. -
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In the above proof we use thin supports to guarantee that for ¢ < j in I,
the “pre-generics” G, Gj agree at i (indeed they equal 0 at i"). A less severe
restriction is to require coherence on a CUB:

DEFINITION. Let P denote Long Easton forcing at Successors and suppose that
p belongs to P(< k%), where « is L-regular. For any £ € [k,k") let f¢ be the
L-least 1-1 function from « onto {. For s € P(k*) = k*-Cohen forcing and @ < k
define s, as follows: If £ = length(s) < k or a # kN fe[a] then s, = 0. Otherwise
8o has domain [a, £) where £ = ordertype fe[a] and s,(8) = s(fe(6)). We say
that p is coherent at  if p(k™1),, p(a™) are compatible for CUB-many o < k. A
condition p in P is coherent if for each L-inaccessible k in the domain of p, p is
coherent at k. Coherent Easton forcing at Successors is the forcing whose
conditions are the coherent conditions in Long Easton forcing at Successors.

THEOREM 4.10. Let P be Coherent Easton forcing at Successors. Then P is
relevant.

PRrROOF. Follow the proof of the previous Theorem. The only new observation is
that by virtue of strong coherence at indiscernibles, we again have the compati-
bility of G%, GJ for i < j in I. -
Remark. Thin Easton forcing at Successors and Coherent Easton forcing at Suc-
cessors serve as prototypes for Jensen coding, introduced in the next section. In
Jensen coding, conditions are sequences of pairs (pa, p},) where strong coherence
is used on the “coding strings” p, and thinness is used on the “restraints” p.

Finally we turn to Long Easton forcing at Successors.
THEOREM 4.11. Let P be Long Easton forcing at Successors. Then P is relevant.

PROOF. Suppose that p belongs to P and ¢ is an indiscernible. We say that p is
coherent at i if p(i*), w(p)(i") are compatible, where 7 : L — L is an elementary
embedding with critical point i. Equivalently: p(i*),, p(a™t) are compatible for
all o in a set X belonging to the L-ultrafilter derived from the embedding 7.
It suffices to show that if p belongs to P(< i"), is coherent at indiscernibles
<iand D C P(< it),D € L is L-definable from indiscernibles > 4 then p
has an extension meeting D which is coherent at indiscernibles < i. For then,
we can repeat the proof of Theorem 4.9, using conditions which are coherent at
indiscernibles < ¢ to construct G, and therefore again obtain the compatibility
of G, GJ for i < j in I.
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Given p, D as above, inductively extend p(a™),a < i, an L-limit cardinal to
g(a™t) as follows: if ¢ [ a has been defined then let g(a™) be least so that for
some least 7, € P(< @),7,U{g(a")} extends ¢ | aU{p(a’)} and meets D. Now
choose X in the ultrafilter derived from = (X containing all indiscernibles < )
such that the r, cohere for a in X to a condition 7 in P(< i). Also define r(i")
to be w(r)(¢*). Then r extends p, is coherent at indiscernibles < ¢ and meets
D. o

Indiscernible Preservation

Though we have shown a number of variants of Easton forcing to be relevant,
we can ask for more: that the generic classes preserve indiscernibles. This will
be important in the next section, where Jensen coding is introduced, as we can
only code a class by a real (in L[0%]) if the class preserves (a periodic subclass
of) the Silver indiscernibles.

DEFINITION. A class A C L preserves indiscernibles if I is a class of indis-
cernibles for the structure (L[A], A).

THEOREM 4.12. For each of Easton at Successors, Reverse Easton, Thin Easton
at Successors, Coherent Easton at Successors and Long Easton at Successors
there is a generic class G that preserves indiscernibles.

PROOF. The generic classes built earlier for Thin Easton at Successors, Coherent
Easton at Successors and Long Easton at Successors preserve indiscernibles. We
now treat the case of Reverse Easton forcing. It suffices to build H C L;  which is
P(< i,)-generic over L;  and such that t(j;...j,) € H iff ¢(j;...7)) € H when-
ever j; < +++ < fn, j1 < -+ < j! belong to I Ni,, i, = w' indiscernible. For then
define t(k; ... k,) € G iff t(i1...i,) € H, i1 < --- < i, the first n indiscernibles.
This is well-defined using the above property of H. And G is P-generic over L: it
suffices to consider predense D € L as P has the co-chain condition. Now write
DeLass(ly...lp),ly <---<ly,in I, and then D = s(i; ...4,,) is predense on
P(<i,). fp=1t(i1...1,) € H meets D then p=t(ly...lp,lmy1...1,) meets D,
where [, < l,41 < --- <[, belong to I. Also p € G by definition of G. Finally,
note that if ky < -+ <k, <l <:---<l,and ly,...,l, arein Lim I, ky,...,k,,
in I then for any ¢, (L|G],G) E p(k1 ... kn) <— ¢(l1...l,) by the Truth Lemma
and the fact that G obeys the same invariance property that characterized H.
So I is a class of indiscernibles for (L[G], G).
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Now we build H. Let Hy C P(< i) be a P(< i3)-generic in L[0%] and
H; = H> N P(< 4;). We must now define H3 C P(< i3) to be P(< i3)-generic
so that t(il,f) € H, iff t(’ig,j) € Hs, where j is an increasing sequence from
I —i,. Note that Hs(i;), a subset of i; generic over L[H,], is a condition in the
ia-Cohen forcing defined over L[Hy|; choose Hj3(i2) to be a generic for this forcing
extending Hs(i1). Now note that for each n there is tn(il,fn) = p, € Hy which
reduces all predense D C P(< iy) in Hull(éy U {é1, k1 ...k, }) below iy, where
iy < k1 < --- < k, belong to I, using the i -distributivity of P(> il)H2(5i1)
in L[Hy(< 4)]. So if we define Hy = {t,(iz,jn) | » € w} we have that Hj
reduces all predense D C P(< i3), D € L below i5. So the desired H3 can be
defined by Hs = {p € P(< 13) | p(< i3) € H3(< i), p compatible with H;}. By
construction, (i1, j) € Hy iff t(i5,j) € Hs. Note that Hs was uniquely determined
by this last condition, once a choice of Hj(i2) was made.

H, is uniquely determined by P(< i4)-genericity and the condition t(iy, 42, ) €
Hs iff t(ig,43,7) € Hy, as the forcing to add Hs(iy) is 7 -distributive (and the
forcing to add Hs(> is) is i5-distributive). We must check that t(iy,4s,7) € Hy
iff ¢(is,43,7) € Hy. Now any condition in Hy is extended by one of the form
p = (po,p1) where py € Hy(< i3) and p; = t(i3,j), as such p reduce all dense
D C P(< i4), D € L below i3. So it suffices to show that t(il,ig,j’) € Hy(< 13)
iff (i9,13,7) € Hy(< i3). By definition of Hy we have t(ig,i3,7) € Ha(< i3) iff
t(i1,42,j) € Hs(< i3). But the latter implies that ¢(iy,45,)) = t(41,43,)) and
as Hj3(< ip) extends Hy(< i1) we have that Hy(< i3) extends H3(< i3). So
t(i1,4,7) € Hs(< iy) iff t(iy,da,7) € Hy(< 4g) iff t(z’l,]'s,j') € Hy(< i3). )

In general define H,, 3 by the condition ¢(im, imi1,7) € Hmio i t(imi1,imi2,7) €
H,,.3. As above we get that H,,,3 is P(< ip3)-generic and (i1 ...im41,]) €
Hppio iff t(i1 . . im,ime2,)) € Hmys. Finally let H = U{H,, | m € w}. Then H
is P(< 1i,)-generic over L and for any k; < --- < kg < j in I,k o <i, < ]
we have t(k; ... kl+1,j) € Hiff t(ky ...k, kl+2,f) € H. This is enough to imply
that t(ko) € H iff t(ky) € H whenever ko, k1 are increasing sequences from I M.
This completes the proof in the case of Reverse Easton forcing.

Easton forcing at Successors can be handled in the same way without need
to consider H (i) for i € I, as H(«) is nontrivial only when « is a successor L-
cardinal. (Indeed, without the latter restriction the construction fails as there is

no available choice for H(i3).) -
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5. The Coding Theorem

Class forcing became an important tool in set theory as a result of the following
theorem of Jensen (see Beller-Jensen-Welch [82]):

THEOREM 5.1. (Coding Theorem) Suppose (M, A) is a ground model. Then
there is an (M, A)-definable class forcing P such that if G C P is P-generic over
(M, A) then:
(a) (MI[G],A,G) E ZFC.
(b) M[G]EV = L[R], R Cw and (M[G], A,G) E A,G are definable from the
parameter R.

Before discussing the proof of this Theorem, we mention the following corollary,
which constitutes a partial positive solution to Solovay’s Genericity Problem (for
set-genericity):

COROLLARY 5.2. There is an L-definable class forcing for producing a real R
which is not set-generic over L.

ProOF. Let P, be Easton Forcing and let Py * P, = P be the 2-step iteration
where P; adds a real R as in Theorem 5.1 such that Gy is definable over L[R], Gy
denoting the Py-generic. Then in L[R] there are x-Cohen sets for every L-regular
k. Thus R is not set-generic over L as no forcing of size k can add a k-Cohen
set. -

In fact R as in Corollary 5.2 can be chosen to satisfy R <z, 0%, but this property
makes use of the relevance of Jensen coding, a topic to be discussed later.

The proof of the Coding Theorem is far easier if one makes the further as-
sumption that 0% ¢ M. Indeed, with this extra hypothesis there is a proof,
which we provide below, making no use of Jensen’s fine structure theory; instead
one uses the following consequence of Jensen’s Covering Theorem (Theorem 4.3),
expressed by Theorem 4.4(i):

PROPOSITION 5.3. Suppose 0% does not exist, j : L, — Lg is ¥1-elementary,
a > wy. If k = crit(j) then a < (k)L

We now give a brief introduction to the coding proof, assuming 0% ¢ M. We
may assume that M F GCH, as this can be easily arranged by a preliminary
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class forcing. Moreover we need not code into a real R; it suffices to code into a
reshaped subset of wy:

DEFINITION. b C wy is reshaped if £ < w; — £ is countable in L[b N &].

The following result of Jensen-Solovay [70] provides one of the key ideas in the
proof.

PROPOSITION 5.4. Suppose V = L[b], b a reshaped subset of wy. Then there is
a ccc forcing R® for adding a real R such that b € L[R).

PRrROOF. Using the fact that b is reshaped we may define (R, | { < wy) by:
R = L[bN¢]-least real distinct from the R, £’ < €. Separate the R,’s by setting
R = {n | n codes a finite initial segment of R}

A condition in R? is p = (s(p), s*(p)) where s(p) is a finite subset of w, s*(p) is
a finite subset of b. Extension is defined by: p < ¢ iff s(p) 2 s(q), s*(p) 2 s*(q)
and § € s*(q) — s(p) — s(q) is disjoint from Rf. This is ccc as s(p) = s(q) — p, g
are compatible. If G is R’-generic then let R = U{s(p) | p € G}. We get:

(¥) £ € b+— RN R finite.

Thus given R we can test “¢ € b” if we know Ry; as R is computable in L[bN¢]
this gives an inductive calculation of B N ¢ from R. -

There is a perfectly analogous notion of reshaped subset of kK for any infinite
cardinal k and if  is an infinite successor cardinal, an analogous forcing R® for
b a reshaped subset of k™.

Now we do not necessarily have reshaped sets in our ground model; instead we
must force them. A reshaped string at x is a function s : @ — 2, @ < k™ such
that £ < a — L[s | {] F Card€ < k. Reshaped strings at k of arbitrary length
a < k1 do exist and serve to approximate the desired reshaped subsets of k™.

We now give a rough description of the forcing conditions. P consists of se-
quences p = {(pa, k) | @ € Card, a < a(p)) where a(p) € Card and:

(a) Pa(p) is a reshaped string at a(p), Prp) = 0.

(b) For a € Card Na(p), (Pa,ps) € RP=*, the forcing for coding p,+, ANa™ by
a subset of o™ using reshaped strings at a.

(c) For a a limit cardinal, a < a(p), p | a “exactly codes” pq.

(d) For « inaccessible, a < a(p) there is a CUB C C « such that g € C —

ps=0.
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Clause (d) is oversimplified in that “inaccessible” should really be (something
like) “L[p,] F « is inaccessible” and C should be required to belong to (something
like) L[p,]. Clause (c) refers to the limit coding, as yet undefined. The key idea
that enables one to carry out a fine structure-free proof of the Coding Theorem
is the use of coding delays in the limit coding. The details are supplied in the
proof below.

The 2 main properties of P that must be demonstrated are:

(Extendibility) Suppose p € P and f: @ — «a, f(3) < 87 for successor cardinals
B < a. Then there exists ¢ < p, lengthqg > f(B) for each successor cardinal
0 < a.

(Distributivity) Suppose that D; is i*-dense on P for each i < a: For all p there
is ¢ <p, g € D; and (gg, q3) = (ps, pp) for all B < i. Then for all p there is g < p,
q meets each D;.

Proposition 5.3 is used to facilitate the proof of Distributivity. Extendibility
is not difficult, taking advantage of the coding delays.

PROOF OF THEOREM 5.1 (ASSUMING 07 ¢ M). We make the following assump-
tion about the predicate A: If H,, a an infinite L[A]-cardinal, denotes {z € L[A] |
transitive closure (z) has L[A]-cardinality < a} then H, = L,[A]. This is easily
arranged using the fact that the GCH holds in L[A].

Let Card denote all infinite L[A]-cardinals. Also Card® = {a* | a € Card}
and Card’ = all uncountable limit cardinals.

Let a belong to Card.

DEFINITION (Strings). S, consists of all s : [a,|s]) — 2, a < |s| < a™ such
that |s| is a multiple of « and for all n < |s|, Ls[A N a, s | ] E Card(n) < « for
some § < (n7)F Uw,.

Thus for @ = w,w; elements of S, are “reshaped” in the natural sense men-
tioned above, but for a > ws we insist that s € S, be “quickly reshaped” in that
n < |s| is collapsed relative to AN «, s | n before the next L-cardinal. This will
be important when we use ~ 0% to establish cardinal-preservation, via Propo-
sition 5.3. Elements of S, are called “strings”. Note that we allow the empty
string 0, € S,, where |0,| = a. For s,t € S, write s <t for s Ct and s < ¢t for
s<t,s#t.
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DEFINITION (Coding Structures). For s € S, define <%, p® inductively by:
p<le = a,u<* = U{ut | t < s} for s # 0, and p® = least limit of limit ordinals
p > p<® such that L,JANa,s|Fs e S, And A° = L,:[ANa,s].

Thus by definition there is § < u® such that Ls[A N a, s] F Card(]s|) < a and
L, F Card(d) < |s|, when o > wy.

DEFINITION (Coding Apparatus). For a > w, s € Sy, i < alet H* (i) = &4
Skolem hull of i U{A N «, s} in A° and f°(i) = ordertype (H*(i) " ORD). For
a € Card™,b* = Range(f* | B®) where B® = the successor elements of {i < « |
i =H*()Nal.

Using the above we will construct a tame, cofinality-preserving forcing P for
coding (L[A], A) by a subset G, of w; which is reshaped in the sense that proper
initial segments of (the characteristic function of) G, belong to S,,.

DEFINITION (A Partition of the Ordinals). Let B,C, D, E denote the classes
of ordinals congruent to 0, 1,2,3 mod 4, respectively. Also for any ordinal o and
X = B,C,D or E, we write X for the o'* element of X (when X is listed in
increasing order).

DEFINITION (The Successor Coding). Suppose a € Card s € S,+. A con-
dition in R® is a pair (¢,t*) where t € S,,t* C {b°" | n € [a™,]|s])} U [t/
Card(t*) < a. Extension of conditions is defined by: (to,t5) < (t1,t7) iff t1 <
to,t7 C t5 and:

(a) [t] <42 <lto|,y € b*1 €t} — to(vP) = 0 or s(n).
(b) |t1l <7° < ltol, v = (0, M1)s Y0 € ANty — to(v€) = 0.

In (b) above, (-,-) is an L-definable pairing function on ORD so that Card({vy, 71)) =
Card vy + Cardy; in L for infinite 7,y;. An R°-generic over A° is determined
by a function T : a* — 2 such that s(n) = 0 iff T(y®) = 0 for sufficiently large
v € b*!" and such that for v < o™ : vy € A iff T({p,71)¢) = 0 for sufficiently
large 7; < a™.

Now we come to the definition of the Limit Coding, which incorporates the idea
of “coding delays.” Suppose s € S,, a € Card' and p = ((pg, pj) | 8 € CardNa)
where pg € Sg for each 8 € Card Na. A natural definition of “p codes s” would
be: for n < |s|, ps(f*1"(B)) = s(n) for sufficiently large 8 € Card Na. There
are a number of problems with this definition however. First, to avoid conflict
with the Successor Coding we should use fI"(3)? instead of f*I"7(8). Second,
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to lessen conflict with codings at 3 € Card Na we only require the above for
B € Card® Na. However there are still serious problems in making sure that the
coding of s is consistent with the coding of ps by p [ 8 for 8 € Card' Na.

We introduce coding delays to facilitate extendibility of conditions. The rough
idea is to code not using f*/(B3)P, but instead just after the least ordinal >
f51(B8)P where ps takes the value 1. In addition, we “precode” s by a subset of
a, which is then coded with delays by (pg | § € Card Na); this “indirect” coding
further facilitates extendibility of conditions.

DEFINITION. Suppose a € Card, X C «a, s € S,. Let i* be defined just as
we defined p® but with the requirement “limit of limit ordinals” replaced by the
weaker condition “limit ordinal”. Then note that A°* = Lz:[ANa, s] belongs to
A?, contains s and ¥; Hull(oU{ANa,s}) in A* = A°*. Now X precodes s if X
is the ¥ theory of A, with parameters from o U {A N a, s} (viewed as a subset
of o).

DEFINITION (Limit Coding). Suppose s € S,, o € Card’ and p = ((pg, p}) |
B € Card Na) where pg € S for each 8 € Card Na. We wish to define “p codes
s”. First we define a sequence (s, | v < 7o) of elements of S, as follows. Let
sop = Dg. For limit v < 7, s, = U{ss | 6 < 7v}. Now suppose s, is defined and
let f,"(8) = least § > f*7(B) such that ps(6P) = 1, if such a § exists. If for
cofinally many 3 € Card™ Na, f,”(8) is undefined, then set 75 = . Otherwise
define X C a by: § € X iff pg((fp(8) + 1+ 8)P) = 1 for sufficiently large
B € Card™ Na. If Even (X) precodes an element ¢ of S, extending s, such that
>, X € A® then set 5,1 = t. Otherwise let s,;1 be s, * X¥, if this results in
>’ € A®+1; if not, then 79 = 7. Now p exactly codes s if s = s, for some
7 < 7 and p codes s if s < s, for some 7 < 7.

Note that the Successor Coding only restrains pg from taking certain nonzero
values, so there is no conflict between the Successor Coding and these delays. The
advantage of delays is that they give us more control over where the Limit Coding
takes place, thereby enabling us to avoid conflict between the Limit Codings at
different cardinals.

DEFINITION (The Conditions). A condition in P is a sequence p = ((pa, p) |
a € Card,a < a(p)) where a(p) € Card and:

(8)  Paw) € Sa(p)> Doy = 0.
(b) For a € Card Na(p), (pa,p’) € RPa+.



28 SY D. FRIEDMAN

(c) Fora € Card,a < a(p),p|ac AP+, p | a exactly codes p,.
(d) For a € Card’,a < a(p), a inaccessible in AP= — there exists a CUBC C
a, C € AP such that 8 € C — pj = 0.

For o € Card, P<* denotes the set of all conditions p such that a(p) < a.
Conditions are ordered by: p < ¢ iff a(p) > a(q), p(a) < ¢g(a) in RP-+ for
a € CardNa(p) N (a(g) + 1) and pap) extends gop) if a(g) = ap). Also for
s € Sy, w < a € Card, P*° denotes P<* together with all p | a for conditions
p such that a(p) = a, pap) < 5. To order conditions in P®, define p* = p for
p € P<* and for p € P* — P<* p* [ @ = p and p™(a) = (s | 1,0) where 7 is
least such that p € P*M; then p < q iff p* < ¢* as conditions in P. Finally,
P<s =u{P*" | n < |s|} U P

It is worth noting that (c) above implies that fP> dominates the coding of p,

Do [1
pla

of Card™ Na. The purpose of (d) is to guarantee that extendibility of conditions

by p | a, in the sense that fP= strictly dominates each N < |pa| on a tail
at (local) inaccessibles is not hindered by the Successor Coding (see the proof of
Extendibility below).

We now embark on a series of lemmas which together show that P preserves
cofinalities and if G is P-generic over (L[A], A) then for some reshaped X C wy,
L[A,G] = L[X] and A is L[X]-definable from the parameter X. Then X can be
coded by a real via a ccc forcing using the Solovay method described earlier.

LeEmMMA 5.5 (Distributivity for R®). Suppose o € Card, s € S,+. Then R® is
a*t-distributive in A®: if (D; | i < ) € A® is a sequence of dense subsets of R*
and p € R® then there is ¢ < p such that ¢ meets each D;.

PROOF. Choose u < p® to be a large enough limit ordinal such that p, (D; | i <
a), A* € A= L,JANat,s]. Let (o; | i < ) enumerate the first o elements of
{<at|B=atNnZHull of (BU{p,(D; | i< ), A~*}) in A}.

Now write p as (to,ts) and successively extend to (t;,t¥) for ¢ < a as follows:
(ti1,t;.1) is the least extension of (t;,t;) meeting D; such that t}, ; contains
{b*" | n € H;yN [a™,]|s|)} where H; = ¥ Hull of o; U {p,(D; | i < a), A<*} in A
and: (a) If b°" € ¢, s(n) = 1 then t;,1(y?) = 1 for some v € b, v > |t;|. (b) If
Y0 & A, 70 < |t;| then ;1 1({70,71)¢) = 1 for some v, > [t;].

The lemma reduces to:

CLAIM. (ty,t}) = greatest lower bound to ((¢;,t}) | ¢ < A) exists for limit A < a.

7
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PrOOF OF CrAIM. We must show that ¢y, = U{t; | ¢ < A} belongs to S,. Note
that (t; | i < A) is definable over Hy = transitive collapse of Hy and by con-
struction, t, codes H) definably over Ly, [t\], where fiy = height of Hy. So
ty is reshaped, as |t)| is singular, definably over Lg, [ta]. By Proposition 5.3,
fx < (Jta]T)E if @ > wy. So ty belongs to S,. ~ (Claim)

_|

The next lemma illustrates the use of coding delays.

LEMMA 5.6 (Extendibility for P*). Suppose that « is a limit cardinal, p € P*,s €
Sa, X C a,X € A°. Then there exists ¢ < p such that X N 3 € A% for each
B € Card Na.

PROOF. Let Y C a be chosen so that Even(Y") precodes s and Odd(Y") is the 3,
theory of A with parameters from aU{ANa, s}, where A is an initial segment of
A? of limit height large enough to extend A® and contain X ,p. For 8 € Card Na
let Az =transitive collapse of ¥; Hull(BU {A N, s}) in A. Then for sufficiently
large 3 € Card’' Na, either Even (Y N () precodes sg € S5 where sg = pre-image
of s under the natural embedding Az — A, or |ps| < (87)* in which case fs
is dominated by the function g(y) = (y7)* on a final segment of Card* NG.

Define g as follows: g3 = s if Even (Y'N3) precodes s € S5, g5 = ps* (Y NB)F
for other 8 € Card' Na, g5 = pg * 0% 1% (Y N B3)° where 0 has length g(3), for
B3 € Card™ Na.

As g | 3,Y NQ are definable over Ag for 3 € Card' Na weget g | 3, Y NG € A%
when Even (Y N ) precodes sz € Ss. Also g | B,Y N3 € A% for other
B € Card' Na as Odd (Y NB3) codes Ag. And note that for all 3 € Card' Na, g [ B
dominates fP¢ on a final segment of Card™ Na (and hence ¢ | B exactly codes
gs), unless Even (Y N ) precodes sg and sz = pg, in which case ¢ [ § exactly
codes gz = sg because p [ 3 does.

So we conclude that for sufficiently large 8 € Card’ Ne, g | 8 exactly codes gg
and X N3 € A%. Apply induction on « to obtain this for all 8 € Card Na.
Finally, note that the only problem in verifying ¢ < p is that the restraint pj
may prevent us from making the extension gz of ps when gg = sz, Even (Y N f3)
precodes sg. But property (d) in the definition of condition guarantees that
ps =0 for Bin a CUBC C o, C € A°. We may assume that C' € A and hence
for sufficiently large 8 as above we get 8 € C and hence py = 0. Soqg<p
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on a final segment of Card N, and we may again apply induction to get ¢ < p
everywhere. .

The key idea of Jensen’s proof lies in the verification of distributivity for P?.
Before we can state and prove distributivity we need some definitions.

DEFINITION. Suppose i < § € Card and D C P*, s € Sg+. D is i*-predense
on P*if Vp € P*dg € P*(q¢ < p,qmeets D and q [ i* =p [ ¢t). X C CardNg+
is thin if for each inaccessible v < #, X N~ is not stationary in 7. A function
f: CardnNB* — V is small if for each v € CardNg*, Card(f(y)) < v and
Support (f) = {y € CardNB™ | f(vy) # 0} is thin. If D C P* is predense and
p € P*, v € Card NBT we say that p reduces D below 7 if for some § € Card™,
d <7, ¢ <p—> there exists 7 < q(r meets D and r | [§, 5] = q | [§, 5]). Finally,
for p € P*, f small, f € A°* we define ZIJZ = all ¢ < p in P*® such that whenever
v € CardNB™, D € f(v), D predense on PP»*  we have that g reduces D below

5.

LEMMA 5.7 (Distributivity for P®). Suppose s € Sg+, 8 € Card.
(a) If (D; | i < B) € A%, D; i*-dense on P* for each i < 3 and p € P* then
there is ¢ < p, ¢ meets each D;.
(b) Ifp € P*, f small in A°® then there exists ¢ < p, ¢ € X}.

PRrROOF. We demonstrate (a) and (b) by a simultaneous induction on 8. If § =
w or belongs to Card® then by induction, (a) and (b) reduce to the follow-
ing: If S is a collection of f-many predense subsets of P*, S € A° then {q €
P? | g reduces each D € S below 3} is dense on P*®. The latter follows from
Lemma 5.5, since P*® factors as R® x Q where 1%° |- Q is BT-cc, and hence any
p € P?® can be extended to ¢ € P® such that D = {r | r U ¢(8) meets D} is
predense < ¢q [ B for each D € S.

Now suppose that (3 is inaccessible. We first show that (b) holds for f, provided
f(B) = 0. First select a CUB C C 8 in A® such that vy € C — f(y) = 0 and
extend p so that f | v, C'N+y belong to AP for each v € Card NG*. Then we can
successively extend p on [8]", 8;11] in the least way so as to meet 3% on [5;", Bl
where (3; | i < ) is the increasing enumeration of C. At limit stages \, we still
have a condition, as the sequence of first A extensions belongs to AP?x. The final
condition, after 3 steps, is an extension of p in E’;.

Now we prove (a) in this case. Suppose p € P* and (D; | i < B) € A%, D, is
iT-dense on P* for each ¢ < 8. Let pg < u® be a large enough limit ordinal so
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that (D; | i < ), p, i* € L,[ANBT,s] and for i < B let p; = po +w - i < ps.
For any X we let H;(X) denote ¥y Hull(X U {(D; | i < 8),p,a*,s, AN B*T}) in
L,[ANGT,s].

Let f; : CardNB — V be defined by: fi(y) = H;(vy) if i < v € H;(y) and
fi(yv) = 0 otherwise. Then each f; is small in A° and we inductively define
p=p°>p! > ... in P? as follows: p't! = least ¢ < p* such that:

(a) g(B) meets all predense D C R°, D € H;(f),
(b) g meets E’;: and D;,

(c) g it =p* it

For limit A < 8 we take p* to be the greatest lower bound to (p | i < \), if it
exists.

CLamM. p* is a condition in P*, where p*(v) = (U{p{, | i < A},U{p}" | i < A})
for each v € CardNg™.

Suppose that y belongs to Hx(y) N G. First we verify that p} = U{p! | i < A}
belongs to S,. Let H)(y) be the transitive collapse of Hy(y) and write Hy(7)
as LE[A, 5], P = image of P®* N H,(7y) under transitive collapse, 3 = image of 3
under collapse. Also write P as R« P95 where G denotes an R*-generic (just as
Ps factors as R® x P9 G4 denoting an R*-generic).

), (b)) was designed to
guarantee: (i) G5 = {p € R* | p is extended by some p*(8),i < A} is R*-generic
over Hj(7), where p* = image of p’ under collapse, and (ii) for each d in (Card™ of
H\(7)), ¥ < 6 < B3, {p | b is extended by some p* | [y,9) in 155:‘} is Pfs—generic
over A% = U{A% | i < A}, where P = U{Pf,% | # < A} and 155% denotes
the image under collapse of P;’% = {q I [1,9) | ¢ € PP}, § = image of § under

Now the construction of the p’s (see conditions (a

collapse.

Note. We do not necessarily have property (ii) above for § = 3, and this is the
source of our need for ~ 0% in this proof.

By induction, we have the distributivity of P? for t € Ss5, 6 € Card* N3, and

hence that of P! for £ € S5, § € (Card™ of Hy(7)), § < B. So the “weak”
genericity of the preceding paragraph implies that:

(d) Lz[AN ’Y,pfr‘] F |pf1‘| is a cardinal.
Also:
(e) La[AN %pfy‘] E |p:1\| is ¥;-singular.
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Thus p) € S, (by (e)) provided we can show that when v > ws, i < (|pJ]*)".
But Hj(v) = Ha(7) gives a X;-elementary embedding with critical point [p}], so
by Proposition 5.3, this is true. Also note that we now get p* | v € APy as well,
since p* | 7 is definable over Hy(y) and we defined APY to be large enough to
contain Hj(y), since L F [p}| is a cardinal by (d) and 3 is a cardinal of L.

The previous argument applies also if v = 3, using the distributivity of R?®, or
if v = BN Hy(7y), using the fact that pg collapses to pf‘/. If vy <4*=min(Hx(y)N
[7,3)) then we can apply the first argument to get the result for v*, and then the
second argument to get the result for ~.

Finally, to prove the Claim we must verify the restraint condition (d) in the
definition of P. Suppose 7 is inaccessible and for i < A let C* be the least CUB
subset of v in A?% disjoint from {7 < 7 | pi" # 0} If A <y then N{C* | i < A}
witnesses the restraint condition for p* at v, if v < A then the restraint condition
for p* at v follows by induction on A and if v = A then A{C? | i < A} witnesses
the restraint condition for p* at 7, where A denotes diagonal intersection.

Thus the Claim and therefore (a) is proved in case (3 is inaccessible. To verify
(b) in this case, note that as we have already proved (b) when f(3) = 0 it suffices
to show: if (D; | i < B) € A® is a sequence of dense subsets of P° then Vpdg < p
(q reduces each D; below (). But using distributivity we see that D} = {q | ¢
reduces D; below i*} is i"-dense for each i < 3, so again by distributivity there
is ¢ < p reducing D; below i for each 3.

We are now left with the case where ( is singular. The proof of (a) can be
handled using the ideas from the inaccessible case as follows. Choose (f; | i < Ao)
to be a continuous and cofinal sequence of cardinals < (3, A\g < (y. First we
argue that p € P° can be extended to meet E’; for any f small in A® provided
f(B) = 0: extend p if necessary so that for each v € CardNG*, f | v and
{B; | B; < 7} belong to AP*. Now perform a construction like the one used to
prove distributivity in the inaccessible case, extending p successively on [G, ;"]
so as to meet %% on [Bo, B;7] as well as appropriate Efc:’s defined on [Gy, 5;1] to
guarantee that p* is a condition for limit A < )\¢. Note that each extension is
made on a bounded initial segment of [Gy, 3) and therefore by induction ¥¥, E’;:
can be met on these intervals. The result is that p can be extended to meet E’; on
a final segment of Card NG and therefore by induction can be extended to meet
%%, Second, use the density of X% when f(8) = 0 to carry out the distributivity
proof as we did in the inaccessible case. And again, (b) follows from (a). This
complete the proof of Lemma 5.7. =
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Theorem 5.1 now follows, as the argument of the previous lemma also shows:

LeEMMA 5.8 (Distributivity for P). If (D; | i < k) is (M, A)-definable where D;
is 1T-dense for each i < k and p € P then there exists ¢ < p,q meets each D;.

Thus P is tame and preserves cofinalities. -

The proof of Theorem 5.1 in the general case is far more difficult; we refer the
reader to Section 4.3 of Friedman [99).

Large Cardinal Preservation

The forcing used to prove the Coding Theorem preserves a number of large
cardinal properties consistent with V' = L[R], R C w, such as the Mahlo and
a-Erdos properties. In addition for any m,n a predicate A* can be adjoined to
(M, A) so that if k is X" -indescribable then « is X7 -indescribable relative to A*,
and then A* can be coded by a real, via a modification of the forcing described
above, so as to preserve X7 -indescribability. Preservation of II? -indescribability
for n > 1 is an open problem.

Relevance
It is at this point that we see the importance of indiscernible preservation:

PROPOSITION 5.9. Suppose that A C L preserves indiscernibles. Then there
is a real R € L[A,0%] generic over (L[A], A) such that A is definable in L[R].
Moreover R preserves indiscernibles.

The following proof of Proposition 5.9 is reminiscent of the proof of relevance
for Coherent Easton forcing at Successors.

PROOF. First assume that A = (). For any indiscernible 7 let j, be the first n
indiscernibles > i. Then define s, € Si" and p” € P* inductively, meeting the
following conditions: sy = (), p* = the trivial condition. s,,1 = m;(p™);+ where
7; : L — L is an elementary embedding with critical point i, p"*! = least ¢ < p®
in P** meeting X% where £,(8) = Hull(3 U j,) if 8 € Hull(8 U j,), fa(8) = 0
otherwise. (3 ranges over Card Ni™ and when 3 = i we take pj, to be s,.) Let

¢ = {p| p is extended by some p"}.

G is not P*"-generic over A® in general as all conditions in G have empty
restraint at indiscernibles < 7. But notice that for ig < i1 < --- < 4, < 7 in
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I, G® U---UGk is a compatible set of conditions. We take G* to be {p | p is
extended by gy A - -+ A g, for some q; € Gf}, ig < +-+ < i, <iin I}. Now we claim
that G is P*n-generic over A*" for each n. Indeed, if D is predense on P** and
belongs to A*», D € Hull({ko,--- ,km} U jn) with kg < -+ < k, < 7 in I then
p" ™! reduces D below k', p"*2 reduces D below k! _;,--- and eventually we get
p"t™ 2 in G* meeting D.

It follows that Gi(< i) = G* N P! is generic over L; (for L;- definable dense
sets) and hence G is P-generic over L where G = U{G(< i) | i € I}. Clearly G
preserves indiscernibles.

If A # () then first force to obtain the GCH, preserving indiscernibles, and then
apply the above argument. -

COROLLARY 5.10 (Jensen). There is R <1, 0%, R not set-generic over L. Hence
the Genericity Problem has an affirmative solution when “generic” is interpreted
to mean”set-generic”.

Not every A C L can be coded generically by a real, in the presence of 0%, as
a result of Paris’ work on “patterns of indiscernibles”:

DEFINITION. For o, € ORD, 3 # 0 let In3 = {iatpy | ¥ € ORD} where
(io | @ € ORD) is the increasing enumeration of I.

THEOREM 5.11 (Paris [74]). If R C w, 07 ¢ L[R] then for some o, < wy,
I, g = the Silver indiscernibles for L[R).

There exist classes A C L which are generic over L, yet relative to which I, g is
not a class of indiscernibles for any «, 3. It follows that A cannot be generically
coded by a real R, as any such R satisfies the hypothesis of Paris’ Theorem.
However this is the only restriction.

THEOREM 5.12. If I, s is a class of indiscernibles for (L[A], A), a, 3 < w; then
there is a real R € L[A,0%] generic over (L[A], A) such that A is definable in
L[R]. Moreover I,z is a class of indiscernibles for L[R).

In addition:

THEOREM 5.13. For any o, < w; there exists a real R such that I,3 = the
Silver indiscernibles for L[R).
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Theorems 5.12, 5.13 are proved by first using Reverse Easton methods to create
A* C L such that I,z is a generating class of indiscernibles for (L[A*], A*) and
then using the method of Proposition 5.9 to code A* by a real, preserving the
indiscernibility of I, g.

6. The Solovay Problems

We are now prepared to discuss the solutions to the three problems posed in
Section One. For a full treatment of this material, we refer the reader to Chapters
5,6,7 of Friedman [99].

The Genericity Problem

We show that there is a real R <; 07 which is not class-generic over L. First
recall the statement of the Truth Lemma, which holds for all tame L-forcings:

Truth Lemma If G is P-generic over (L, A) then (L[G], 4,G) F ¢(c¢ ...0%) iff

n

there exists p € G, p I (07 ...0y).
We also have:

Uniform Definability Lemma The relation “p I+ ¢(0y...0,)” is definable
as a relation of p, ¢, (07 ...0,) over (L,Sat(L, A)) where Sat(L, A) denotes the
Satisfaction relation for (L, A).

Remark. (L,Sat{L, A)) is amenable, as (L, A) amenable — (L;, AN L;) < (L, A)
for sufficiently large 7 € I.

A consequence is the following:
Fact If G is P-generic over (L, A) then Sat(L[G], A, G) is definable over (L[G], Sat(L, A), G).

Using this Fact we can see a strategy for producing a real R not generic over L:
If R € L|G|, G P-generic over (L, A) then by the Fact and Tarski’s Undefinability
of Satisfaction, Sat(L, A) cannot be definable over (L[G], A, G) and hence cannot
be definable over (L[R], A). Thus:

PROPOSITION 6.1. R generic over L — For some amenable (L, A), Sat(L, A) is
not definable over (L[R], A).



36 SY D. FRIEDMAN

THEOREM 6.2. There exists R <j, 0% such that Sat(L, A) is definable over (L[R], A)
for every amenable (L, A).

To prove Theorem 6.2 we define for each ¢ € I a forcing P, C L;+ for pro-
ducing X; C ¢ such that for each constructible A C ¢, Sat(L;, A) is definable
over (L;[X;], A, X;). This forcing P; is of the Easton variety and hence preserves
cofinalities. The main part of the proof consists in showing that there is a single
X C ORD definable in L[0#] such that X N is P;-generic for all i € I simul-
taneously, and such that X preserves indiscernibles. Then for each amenable
(L, A), Sat(L, A) is definable over (L[X], A, X) and X can be coded by a real
R <, 0% with the same property, using the fact that X preserves indiscernibles
and Proposition 5.9.

The proof is not special to the Sat operator and can be used to prove:

THEOREM 6.3. Suppose F' : Pr(wy) = Pr(w1) is constructible where Pr(w;) =
all constructible subsets of w;. Then there is a real R <y, 0% such that F(A) is
definable over (L, [R], A) for all A € Pr(w1).

The II}-Singleton Problem
The following result gives an affirmative solution to this problem:

THEOREM 6.4. There is a real R generic over L such that 0 <; R <; 0% and R
is the unique solution to a 13 formula.

The heart of the matter is to build an L-definable forcing with a unique generic,
in the form of a real. To guarantee uniqueness we design our forcing so as to make
our generic “guess” at which ordinals belong to I = the Silver indiscernibles. Of
course no generic can correctly answer this question, but we arrange that only
one generic does a reasonable job of guessing, in the sense that other potential
generics would in fact produce CUB classes disjoint from I, an impossibility.
More precisely, a generic consists of a real R and a class A such that:

(a) R codes A as in Jensen coding.

(b) There is a X;(L) procedure (i;...4,) — p(i1...4,) such that the generic
corresponding to (R, A) is {p(i1...in) | i1 < --- < i, belong to I'}.

(c) A adds CUB sets so as to “kill” any (4 ...14,) such that p(i; .. .14,) disagrees
with R.
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(d) No (i1...i,) € I" can be killed.

It follows that {p(i1...4,) | 41 < -+- < i, in I} is the only generic, as by (c)
another generic R’ would kill (4 ...4,) € I" such that p(i; . ..i,) disagrees with
R', an impossibility by (d).

Of course there is a circularity here, as to design P we need the procedure
in (b), which is defined assuming that we know P. This is resolved using the
Recursion Theorem.

The killing method above involves forcing of the Reverse Easton variety and
the coding of A by R uses Jensen coding, a variety of Coherent Easton forcing
at Successors. Thus unlike the solution to the Genericity Problem, here we must
mix the relevance arguments for two different types of class forcing together, to
obtain a generic in L[0#] for P.

The Admissibility Spectrum Problem

We first describe the proof of:

THEOREM 6.5 (David [89], Friedman [99]). There is a real R <r 0% such that
A(R) C the recursively inaccessible ordinals.

We wish to arrange that @ R-admissible — « recursively inaccessible. Suppose
that we have D C w; such that o D-admissible — « recursively inaccessible.
(o is D-admissible if L,[D] obeys ZFC — Power, with replacement restricted to
formulas which are 3; and mention D as a predicate.) Then we may hope to
code D by a real R with the same property. However if we code D by R in the
usual way (with almost disjoint forcing) we only obtain:

o R-admissible — o D N wl*-admissible

The reason is that to decode D from R we need to know the almost disjoint
coding reals R, and it is only for { < wre that we have R € L,. Thus the
recovery of D from R is not “fast enough”. On the other hand we would be in
good shape if D were to have the following stronger properties:

(¥) @ D N&-admissible, L,[D NE] F € = w; — a recursively inaccessible

(%) o D-admissible and L,[D] F w; does not exist — « recursively inaccessible
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For then we need only recover D N wre inside L4[R] to guarantee that o is
recursively inaccessible (or inadmissible relative to R), a recovery that can be
successfully made.

The question is how to obtain D C w; obeying (%), (**). The natural thing to
do is to force with conditions d which are bounded subsets of w; obeying (x), (*x*)
for £ < sup(d), ordered by end extension. We now come to the key part of the
argument, which is contained in the following two observations:

(a) Extendibility for this forcing is trivial because given d and £ > sup(d) we
are free to extend d to length £ by killing all admissibles between sup(d)
and £. It is important for this argument that we are only concerned with
killing admissibility, not with preserving it.

(b) Distributivity for this forcing is easily established assuming the following:
There exists D' C w, such that:

(+) a D' N &-admissible, L,[D' N&] E € = wy — a recursively inaccessible

(#+") @ D'-admissible and L,[D'] E ws does not exist — « recursively inaccessible

Thus we are faced with the original difficulty, but one cardinal higher! However
note that we need not already have all of D' before we can start building D;
thus the idea of the proof (as in other Jensen coding constructions) is to build
R,D,D', D", ... simultaneously and check distributivity for any final segment of
the forcing.

To solve the Admissibility Spectrum Problem we must introduce the require-
ment of admissibility preservation into the above. This requires the method of
Strong Coding.

THEOREM 6.6. There is a real R <y, 0% such that A(R) = the recursively inac-
cessible ordinals.

We approach the problem as in the previous proof. Of course the Extendibility
property is more difficult to establish (Distributivity is approximately the same).
Indeed the desired extension of d to d’ of length > &£ must be made so as to preserve
the admissibility of recursively inaccessible ordinals. Thus our conditions must
be constructed out of sets which are generic for “local” versions of the full forcing.
In fact we construct a strong coding forcing PP C Ls at each admissible 3 and
then inductively build P? out of sets which are generic for the various P?', 5’ < 3.
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The main difficulty is in showing that the desired locally generic sets actually
exist; note that we want a PP-generic over Lg to exist where 3 may be uncount-
able. The proof of local generic existence is by a simultaneous induction with the
proofs of Extendibility and Distributivity and requires a substantial use of the
kind of fine structure theory used in the construction of higher gap morasses.

7. (Generic Saturation

Suppose that P is an L-forcing which has a generic; need it have a generic
definable in L[0%]? Not necessarily, as the forcing P could produce a real R that
guarantees the countability of wf[o#}, and clearly no such real can exist in L[0%].
However we can weaken this slightly to obtain a positive result:

DEFINITION. Suppose that M C N are inner models of ZFC. We say that N
is generically saturated over M if whenever an M-forcing has a generic, then
it has one definable in a set-generic extension of N.

With a mild assumption about oo = the class of all ordinals, it can be shown
that L[07] is generically saturated over L. This assumption involves the concept
of an Erdos cardinal.

DEFINITION. A cardinal k is a-Erdos if whenever A C k and C is CUB in &
there exists X C C such that ordertype X = o and y € X — X — v is a set of
indiscernibles for (L[A], A, §)s<. We say that oo is a-Erdo6s if this holds where
k is replaced by oo and indiscernibility is only required for ¥; formulas.

THEOREM 7.1. Suppose co is w + w-Erdds. Then L[0#] is generically saturated
over L.

Theorem 7.1 is proved by starting with G P-generic over (L, A) and using
w + w indiscernibles for (L[G, 0], A, G) to produce another P-generic G*, which
is “periodic”. The latter means that for some a € ORD and 0 < 8 € ORD,
Ing = {iatpy | 7+ € ORD} is a class of indiscernibles for (L[G*], A, G*), where
I = (i | & € ORD) is the increasing enumeration of I. Then by an absoluteness
argument, such a G* may be defined in a set-generic extension of L[0#] in which
a and (8 are countable.
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PROOF OF THEOREM 7.1. Suppose that G C P is P-generic over (L, A). We
shall construct another P-generic G* (in a set-generic extension of V') such that
G™ has periodic indiscernibles.

Let X be a set of indiscernibles for (L[0%,G], G, A) of ordertype w + w such
that « € X — «a is ¥j-stable in 0%, G, A. The latter means that (L,[0%,G N
L.),G N Ly, AN L,) is ¥;-elementary in (L[0% G], G, A). We can obtain X as
C = {a | a is ¥;-stable in 0%, G, A} is CUB.

Choose (D(ay ...0p) | @1 < --+ < a, in ORD) such that each (L, A)-definable
open dense D C P is of the form D(a;...a,) for some oy < --- < a, in I. Also
assume that this sequence is A;(L, Sat(L, A)). Let D*(a; an) —n{DB) | 3
a subsequence of (a;...a,)}.

For jo € X choose the least tjo(ko(jo) jo, k1(jo)) in D(]O) N G. By the choice
of the indiscernibles X, we can write this as tg(ko, jo, k1 (Jo)) and jo < 71 in
X — k1(jo) < 1. ) ) )

Next for jo < j1 in X choose the least tio.ir (K& (Jos J1), Jos k1 (Go, 71), 71, k3 (Jo, J1))
in D*(ko, jo, k1(Jo), 71, k1(71)) N G. By the choice of X we can write this as
tl(k%,jo,ké (jg),jl,k_%(jo,jl)), and by Y;-stability this is less than j, whenever
j1 < j2 in X. But we want to argue that in fact kg (Jo, j1) can be chosen indepen-
dently of jo. . . .

Assuming this, we have ¢, (k2, jo, kX (jo), 1, k(j1)) € D*(ko, jo, k1(jo), j1, k1(j1))N
G for jo < j1 in X. By modifying ¢; we can guarantee that k_}(jg) = }( jo) for
all jo € X, jo # min X. Also we can arrange that kg C kg, k1(jo) C :l( jo) for
jo € X. By indiscernibility, the structure (k_i (Jo), <) with a unary predicate for
k:1 (Jo) has 1somorphlsm type 1ndependent of the choice of j() € X.

Build tz(ko,Jo,k2(Jo),Jl,k1(31),Jz,k2(.72)) € D*(ko,Jo,kl(]o),h,kl(Jl),Jz,kl(Jz))
G similarly, so that ko C ko and for jo € X, kl (j(]) C k2(j0) with the isomor-
phism type of <k2(]0) <) with unary predicates for K (Jo), kol 1(j0) independent of
Jo- Continue with ¢3,,,....

Let i, = min X and 3 = ordertype(U{k"(jo) | n € w}), an ordinal independent
of the choice of jo € X. In a generic extension where « is countable we may also
arrange that U{k? | n € w} = I N la-

For any indiscernible i, define k"(zv) C In (i, Z,\/_{_ﬂ) so that (I N (iy,%41g), <
) with a predicate for k”(zﬂ,) is isomorphic to (U{k?(jo) | n € w},<) with a
predicate for k7(jo), for jo € X. Define: G* = {p € P | p is extended by some
tn (K, gy K2 (iay)s* + »iay, K (ia,)) Where @ < a; < ... < @, are of the form
a+ (7,7 € ORD}. Using the indiscernibility of I —i, in (L, A), G* is compatible
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and meets every (L, A)-definable open dense subclass of P. Thus G* is P-generic
and I, g is a class of indiscernibles for (L[G*], A, G*).

To complete the proof we return to the problem of making k_% (Jo, 71) indepen-
dent of jy. First a lemma:

LEMMA 7.2. Letx < y by the maximum difference order on finite sets of ordinals:
x < y iff o € y where « is the greatest element of the symmetric difference of x
and y. For any jo < j; in X and any open dense D definable in (L, A) there exists
t([(;,jg,ﬁz,jl,ﬂg,[) € Lmin(z)ﬂDﬂG such that E?) < Jo < [{ <n< E; < Zbe]ong to
I and {oUl; Ul is the <-least finite set of ordinals (not necessarily indiscernibles)
z such that t(x N jo, Jo, = N (Jo, 1), Jj1, T — jl,E_j belongs to L, N DNG.

PROOF. Let z be <-least such that for some ¢ and indiscernibles ¢ > max(z), t(zN
Jo, Jo, € N (Jo, 41), j1, = — jl,E) € Ly N DNG. If some a € z were not in I
then there would be a t*(z* N jo, jo, z* N (Jo, j1), j1, T* — j1,€*) = t(z N Jo, jo, z N
(Jo,71),J1, @ — jl,f) with 7 an initial segment of ¢* and z* — o = z* — (a+1), as
o is L-definable from indiscernibles < o and indiscernibles > 7. So let EB,E:,E;
be z N jo, z N (Jo, j1), T — J1- B

Now for jo < 71 in X choose the least tJO Jl(k_(;(jg,jl) Jo, k_;(jg,jl),jl, kg,o(jo,jl), k;l(jo,jl))
to satisfy Lemma 7.2 with D = D*(ko,jo,kl(jo) jl,kl(_]l)), and Edenoted by
k:2 1(Jo, J1)- By the choice of X we can write this as tl(ko, Jo, kl(jg) J1, k:2 0(Jo, J1), %),
where & denotes an arbitrary sequence of large indiscernibles (of the appropri-
ate length). Note that (kg,k}(jo),kgzo(jg,jl» is definable in (L[G], 4,G) from
ko, jos k1 (jo), 1, k1 (j1), & and therefore k3 4 (jo, j1) is definable in (L[G], 4, G) from
k:(jl), o6 and ordinals < j;.

CLAIM. k; 0(Jo, 71) is independent of jo.

PROOF. Let jp < j1 < ... < j be the first w + 1 elements of X and for any n,m
let k(jin, 7)(m) = mth element of k; 0(Jn, J)- If the Claim fails then for some fixed
m, k(jo,5)(m) < k(j1,j)(m) < --- is an increasing sequence of indiscernibles
with supremum £ € I (using the fact that X — j has ordertype > length( ). As
these ordinals are definable in (L[G], A, G) from ordinals in (j + 1) U k; (j) U &
we get that £ has cofinality < j in L|G]. But 0% ¢ L|G] (as G is generic over L)
so by Jensen’s Covering Theorem, £ has L-cofinality < (5" in L[G]). As £ € I, £
is L-regular and hence j* in L < j* in L[G].
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But then in L[G] there is a CUB C C j such that D C j,D CUB,D € L —
C C DUq for some a < j. Now I N j is the intersection of countably many such
D’s and therefore as j has uncountable cofinality (in L|G,0%]) we get C C I U«
for some o < j. This yields 0% € L[G], contradiction.

This proves the Claim. -

With the Claim we see that there is a P-generic G* (in a set-generic extension
of V') such that (L[G*], A, G*) has a periodic class of indiscernibles I, . It now
follows by absoluteness that there is such a G* definable in a set-generic extension
of L[0#] in which o and 3 are countable. This completes the proof of Theorem 7.1.

_|

It can be shown that there can be no countable bound on the a and ( of the
previous proof, using the solution to the IIi-Singleton Problem. (See Section 8.2
of Friedman [99].)

8. Further Results

The material below is discussed in Chapter 8 of Friedman [99].
Strict Genericity

In set forcing, one may show that an inner model of a generic extension is itself
a generic extension. This can fail for class forcing.

DEFINITION. Let (M, A) be a ground model. A real R is generic over M
if it belongs to a generic extension of M (via a forcing amenable to M). R is
strictly generic over M if for some amenable structure (M, A), some forcing
P definable over (M, A) and some G P-generic over (M, A), R belongs to M[G]
and G is definable over (M[R], A).

THEOREM 8.1. There is a real R <; 0% such that R is generic over L (for an
L-definable forcing) but not strictly generic over L.

As with the solution to the Genericity Problem, Theorem 8.1 is reduced to
the violation of a definability property: If R is strictly generic over L then for
some A amenable to L, Sat(L[R],() is definable over (L[R], A). The latter can
be violated using class forcing.
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Minimal Universes

The minimal model of V' = L[0¥] can be “minimized” by a class which does
not construct 0%:

THEOREM 8.2. Suppose that for no « is L,[0%] a model of ZFC. Then there is
A C ORD definable in L[0%] such that 0% ¢ L[A] and for no « is (L4[A], AN a)
elementary in (L[A], A).

This result is partial evidence for the conjecture that 07 is generic over some
proper inner model of L[07].

Countable II} Sets

Assume that R* exists for every real R. Kechris-Woodin [83] showed that a
nonempty countable I} set must have an ordinal-definable element; we show that
in a sense their result is optimal. First some definitions.

DEFINITION. A set of reals X is n-absolute if for some formula ¢, R € X <
LIR] & ¢(R,w1,... ,w,), where w; denotes the wy of V. An n-absolute sin-
gleton is a real R such that {R} is n-absolute. When n = 0 we say absolute,
absolute singleton.

THEOREM 8.3 (Kechris-Woodin [83]). Assume that R* exists for every real R.
A nonempty countable I1} set contains an n-absolute singleton for some n.

Our next result demonstrates the optimality of the previous theorem.

THEOREM 8.4. For each n there is a countable 13 set X,, such that R € X,, — R
is not an m-absolute singleton.

Not all elements of countable II} sets are n-absolute singletons for some n:

THEOREM 8.5. There exists a countable IT} set X and R € X such that for all n,
R is not an n-absolute singleton.

Not every absolute singleton belongs to a countable I} set: If a set is X3 (with
a constructible parameter) and contains a non-constructible real then it has a
constructibly-coded perfect closed subset, and a code for this perfect closed set
can be computed as a X1 function applied to an index n € w for the given X1
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set X,,. Moreover {n | X,, has a perfect closed subset} is X.1. It follows that in L
there is a perfect closed set C, with code recursive in the complete X3 subset
of w, such that R € C — R does not belong to any II} set whose complement
contains a non-constructible real. In particular R € C — R does not belong to
a countable II} set. The set C' contains elements which are Al in L, and hence
which are absolute singletons.

An open problem is to provide a revealing characterization of the reals which
belong to a countable II} set.

In Harrington-Kechris [77] it is proved: If X is a nonempty IIj set then X has
an element R such that either R <; 0% or 0 <; R. Our next result implies
that 07 has least nonzero L-degree among reals with this property, even when X
is restricted to have a unique element.

THEOREM 8.6. There exists a sequence ((Rf, R}) | n € w) of pairs of reals such
that:

(a)RSLRg,RSLR?—)REL
(b) {<Ranal> | R = R:L} is H%
(c) n € 0% <3 n € R} <> n € RY.

COROLLARY 8.7. Suppose R is a non-constructible real and every II.-singleton
is <p-comparable with R. Then 0% < R.

Thus 07 is the least “canonical” II}-singleton.
New X! Facts

If M is an inner model, 0% ¢ M then of course there is a true X} sentence not
holding in M, namely the sentence asserting the existence of 0%; can this effect
be achieved by forcing over M?

THEOREM 8.8. There exists an w-sequence of Y3 sentences (y, | n € w) such
that if M is an inner model, 0% ¢ M:

(a) ¢ is false in M for some n.
(b) For each n, some generic extension of M satisfies ¢y,.

Moreover if M = L[R], R a real then the generic extensions in (b) can be taken
as inner models of L[R,07%].

The proof is based on the following, which may be of independent interest.
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THEOREM 8.9. There exists an L-definable function n : L-Singulars — w such
that if M is an inner model, 0% ¢ M:
(a) For some n, M = {a | n(a) < n} is stationary.
(b) For each n there is a generic extension of M in which 0% does not exist and
{a | n(a) < n} is non-stationary.

In (a) of the previous theorem, we intend that whenever C' C ORD is CUB
and M-definable then there is @ € C, n(a) < n. In (b) we intend that the
generic extension satisfy ZFC and have a definable CUB class C' C ORD such
that a € C — n(a) > n.

Killing Admissibles Revisited

DEFINITION. « is quasi R-admissible if every well-ordering in L,[R] has or-
dertype less than a.

R-admissibility implies quasi R-admissibility, but not conversely, as the limit of
the first w R-admissibles is quasi R-admissible but not R-admissible. Let A*(R)

denote {a@ > w | a is quasi R-admissible}, a CUB class of ordinals containing
A(R).

THEOREM 8.10. Suppose ¢ is ¥; and L = ¢(k) whenever k is an L-cardinal.
Then there is a real R <z, 0% such that A*(R) C {a | L |= p(c)}.

COROLLARY 8.11 (Beller (in Beller-Jensen-Welch [82]), David [82]). Suppose «
is countable, L, = ZF. Then for some real R, « is the least ordinal such that
L,[R] E ZF.

COROLLARY 8.12. There is a real R < 0% such that A*(R) C {a | L, E
ZF — Power}.

Non-Characterizability of Admissibility Spectra

There cannot be a simple characterization of admissibility spectra, by virtue
of the following result.

THEOREM 8.13. Let X = {A C w¥ | A € L and for some real R, w}™

A(R) Nwi = A}. Then X =, 07.

= wl and
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A;-Coding

The results described here (with the exception of Theorem 8.22) are taken
from Friedman-Velickovié [97]. A real R A;-codes a class A C ORD iff A is
A-definable over L|R]. Every L-amenable class A is Aj-coded by 0%. The next
result provides a converse to this result.

PROPOSITION 8.14. Suppose that L-Card = {« | « is a cardinal of L} is ¥, over
L[R], R a real. Then 0% <, R.

PROOF. Suppose that the ¥; definition has parameters less than «, where k is a
singular cardinal. As k™ is an L-cardinal, by reflection there must be unboundedly
many o < k7, a € L-Card. But then (k%)L < kT, which implies that 07 exists.
As this argument can be carried out in L[R], in fact 0% < R. -

We introduce a sufficient condition for an L-amenable class to be A;-coded by
a real which is class-generic over L. To motivate it we first indicate a necessary
condition for A;-codability:

DEFINITION. Suppose that z is an extensional set (i.e., (z, €) satisfies the axiom
of extensionality). Let Z denote the transitive collapse of z. For A C ORD we
say that = preserves A if (Z,€, AN Z) is isomorphic to (z,€, AN z).

DEFINITION. For a set z and ordinal 8, z[6] denotes {f(y) | v < 0, f € =,
f a function whose domain includes v}. We say that = strongly preserves
A C ORD if z[d] is extensional and preserves A for each cardinal §. A sequence
of extensional sets tg C ¢; C - -- is tight if it is continuous (i.e., ty = U{t; | i < A}
for limit A) and for each i: t; = t;41 or t; € t;41, (¢; | j < i) belongs to the least
ZF~ model containing ¢; as an element which correctly computes Card(%;).
Condensation Condition Suppose that ¢ is transitive, k is regular, K € t and
x € t. Then:

(a) There is a tight k-sequence tg < t; < --- < t such that z € ¢y and for each
i < k: Card(t;) = k, t; strongly preserves A.

(b) If k is inaccessible then there exists tg < t; < --- < t as above, but where
Card(t;) = w;.

THEOREM 8.15. (A;-Coding Theorem) Suppose that A is L-amenable and obeys
the Condensation Condition in L. Then A is Ai-coded in a tame class-generic
extension of (L, A) by a real R such that L, L|R] have the same cofinalities.
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COROLLARY 8.16. Suppose that A is L-amenable, obeys the Condensation Con-
dition in L and preserves indiscernibles. Then A is A;-definable over L[R] for
some indiscernible preserving real R such that L, L[R] have the same cofinalities.

We can apply the above to show that L-cof w = {a | a has L-cofinality w} is
A-definable in L[R], where R is a real not constructing 0%.

LEMMA 8.17. There is a real Ry, class-generic over L, such that Ry <; 0%, R
preserves all L-cardinals with the exception of wF and the Condensation Condi-
tion holds for A = L-cof w in L[R].

COROLLARY 8.18. There exists a real R <; 0% such that R is class-generic
over L, R preserves indiscernibles and all L-cardinals greater than wr, and L-

cofw is A; over L[R].

COROLLARY 8.19. There is a real R < 0% such that every quasi R-admissible
has uncountable L-cofinality.

COROLLARY 8.20. There is a real R <y 0% such that the function f(a) =
[@]“ N L is Ay over L[R).

An immune partition is F' : ORD — 2 such that neither {a | F(a) = 0} nor
{a | F(a) = 1} contains an infinite constructible set.

COROLLARY 8.21. There is a real R <j, 0% such that some immune partition is
Ay (L[R]).

We consider the “characterization problem” for A;j-definability in a real: Is
there an exact constructible criterion for a subset of an L-cardinal s to be the
intersection with x of a predicate which is A;-definable in L[R] for some real R

that preserves L-cardinals? The answer is “No” when « is w?.

THEOREM 8.22. Let S = {X C wf | X = wi N A for some A = ORD, A A;-
definable in L|R] for some real R that preserves L-cardinals}. Then S =p, 0%.

Theorem 8.22 rules out any simple characterization of when an L-amenable
predicate can be A;-definable in a real not constructing 0%.

Minimal Coding

We have the following strengthening of the Coding Theorem.
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THEOREM 8.23. Suppose that A C ORD and (L[A], A) is a model of ZFC + GCH.
Then there is an (L[A], A)-definable class forcing P such that if G C P is P-
generic over (L[A], A):

(a) (L[A,G], A, G) is a model of ZFC + GCH.

(b) L[A,G] = L[R)] for some real R and A,G are definable over L[R] from the

parameter R.
(c) L[A] and L|R] have the same cofinalities.
(d) R is minimal over L[A]: if z € L[R] then either z € L[A] or R € L[A, z].

Thus a universe obeying GCH can be “coded minimally” by a real. Note that
in clause (d) of the Theorem, x is any set constructible from R, not necessarily a
real.

Further Applications to Descriptive Set Theory

Solovay [70] established the consistency of a number of regularity properties
for projective sets of reals, using a natural model in which w; is inaccessible to
reals, (i.e., wy is an inaccessible cardinal in L[R] for each real R). In this section
we construct other models with this property, which can be applied to the study
of regularity properties for projective sets and projective prewellorderings.

A set of reals is X} if it is the continuous image of a Borel set and is II] if its

1

v+ if it is the continuous image of a II}, set and is II;, |,

complement is Xj. Ttis ©

if its complement is £, ;. A set of reals is A} if both it and its complement are

E_}l. Similar definitions apply to k-ary relations on the reals. It a set of reals (or
k-ary relation in reals) is E_,lb for some n then we say that it is projective.

Regularity Properties

DEFINITION. Measure (3}.) is the assertion that every 3! set of reals is Lebesgue
Measurable. Category (Egis the assertion that every E}L—set of reals has the Baire
Property, i.e., has meageT symmetric difference with some Borel set. Perfect (=)
is the assertion that any uncountable 3! set of reals contains a perfect closed
subset. Similar definitions apply to ITL, AL,

In ZFC one may prove Measure (X1), Category (X1), Perfect (X1). In Godel’s
model L one has ~Measure (A}), ~Category (Al), ~Perfect (II!) using the
fact that in L there is a A} wellordering of the reals (and the Kondo-Addison
Uniformization Theorem for I1}). By extending ZFC slightly we get:
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THEOREM 8.24. (Solovay [69]) Assume that w; is inaccessible to reals. Then the
following hold: Measure (X3), Category (X3), Perfect (X3).

Our next result implies that the previous Theorem is optimal. The proof is
based on David [83].

THEOREM 8.25. Assume the consistency of an inaccessible cardinal. Then there
is a model in which:
(a) wi is inaccessible to reals.
(b) There is a A} wellordering of the reals, and hence ~Measure (A}), ~Category
(43).
(c) ~Perfect (I13).

Remark. We use X}, TI;,, A} to denote the “effective” versions of X, T}, A}; see
Moschovakis [80] for details.

Another axiom with consequences for regularity properties of projective sets is
Martin’s Axiom (MA). (We take MA to include the hypothesis ~ CH.)

THEOREM 8.26. MA implies Measure (X;), Category (X3).
Again this is optimal.

THEOREM 8.27. This is a model of MA in which:

(a) wy = wi.
(b) There is a A} wellordering of the reals.

Remark. Perfect (II}) fails in the above model, as this property implies that wf
is countable. It is not known if (a) can be replaced by “w; is inaccessible to reals”
in the previous theorem (assuming the consistency of a weakly compact cardinal;
this is a necessary assumption for the consistency of MA +w; inaccessible to
reals).

Theorem 8.25 generalizes to higher levels of the projective hierarchy. Recall
that x is Mahlo if x is inaccessible and {k < k | kK regular} is stationary.

THEOREM 8.28. Assume the consistency of a Mahlo cardinal. Then there is a
model in which:

(a) Measure (X3), Category (X3). Perfect (X3).
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(b) There is a A} wellordering of the reals.
(c) ~Perfect (II}).

Remark. To go further, one must replace L by a sufficiently X3 correct model.
Thus, assuming the consistency of “every set has a sharp” toget?er with a Mahlo
cardinal, one obtains a model of Measure (Xj), Category (X}), Perfect (X}),
~Perfect (I11) with a Al wellordering of the reals. However the author does not
know if this use of #’s is necessary.

Prewellorderings

A prewellordering is a reflexive, transitive well-founded relation. A wellorder-
ing is obtained by identifying two elements a,b when a < b, b < qa; the length of
the prewellordering is the ordertype of its associated wellordering.

5! denotes the supremum of the lengths of all Al prewellorderings of the reals.

THEOREM 8.29. (Classical) 6] = w;.

Kunen and Martin showed that d3 is at most w; (see Martin [77]). The next
result shows that this result is the best possible.

THEOREM 8.30. It is consistent with ZFC that 6_% = wy.

Using the Condensation Condition, we can simultaneously have w; inaccessible
to reals:

THEOREM 8.31. (Friedman-Woodin [96]) Assuming the consistency of an inac-
cessible, there is a model in which 5_21 = wy and wy is inaccessible to reals.

There is no explicit bound on 5_; provable in ZFC, even with the added hy-
pothesis that w; is inaccessible to reals.

THEOREM 8.32. (Section 8.4 of Friedman [99]) Assuming the consistency of an
inaccessible, there is a model in which w; is inaccessible to reals and there is a
I1} wellordering of some set of reals of length k, for any pre-chosen L-definable
cardinal k (and hence 63 > k).
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9. Some Open Problems

1. Can one code a class by a real, preserving II" -indescribability?

2. Define n-generic over L as follows: R is 0-generic over L iff R is generic over
L. R is n + 1-generic over L iff R is generic over an inner model of L[S], where
S is m-generic over L. Does n + 1-genericity imply n-genericity for some n? Is
there a real R <; 0% which is not n-generic over L for any n?

3. Is 07 generic over some proper inner model of L[07]?

4. Can one prove that L[0%] is generically saturated over L in the theory ZFC +0%
exists?

5. Is L[0%] the least inner model which is generically saturated over L?

6. Is there a reasonable notion of “forcing” with the property that every real
either constructs 0% or can be obtained by “forcing” over L?

7. Is there areal R, 0 <;, R <, 0%, which is the unique solution to a IT3 formula
¢ which provably in ZFC has at most one solution?

8. Is there a simple characterization of the reals which belong to a countable II3
set?

9. Assuming only the consistency of an inaccessible cardinal, is it consistent for
each n that all X! sets of reals be Lebesgue Measurable and have the Baire and
Perfect Set pro;ﬁties, while there is a Al 41 wellordering of the reals?

10. Assuming only the consistency of a weakly compact cardinal, is it consistent
to have Martin’s Axiom, w; inaccessible to reals with a Aé wellordering of the
reals?

11. Is it consistent for Al-reducibility and L-reducibility to coincide?

12. Assuming only the consistency of an inaccessible cardinal, is it consistent for
Post’s Problem to fail in HC = the hereditarily countable sets?

13. Is there a remarkable real; i.e., a real R <y 0% such that R is not generic
over L, R is a II}-singleton, A(R) = the recursively inaccessible ordinals and R
has minimal L-degree? It has not yet been shown that there is a real R < 0%
which has more than one of these properties simultaneously.
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