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Abstract A classic result of Baumgartner-Harrington-Kleinberg [1] implies
that assuming CH a stationary subset of w; has a CUB subset in a cardinal-
perserving generic extension of V, via a forcing of cardinality w;. Therefore,
assuming that w? is countable: {X € L | X C wl and X has a CUB subset in
a cardinal-preserving extension of L} is constructible, as it equals the set of
constructible subsets of w’ which in L are stationary. Is there a similar such
result for subsets of wi? Building on work of M. Stanley [9], we show that
there is not. We shall also consider a number of related problems, examining
the extent to which they are “solvable” in the above sense, as well as defining
a notion of reduction between them.

We assume throughout that 0% exists.

Definition A subset X of L is {7 iff X can be written in the form
a € X iff p(a) holds in a cardinal-preserving extension of L

for some ¥; formula . We intend our cardinal-preserving extensions of L
to satisfy AC and to be contained in a set-generic extension of V. (In all
natural cases, the words “a set-generic extension of” can be omitted; see the
Remark following the proof of Theorem 1 below.)

Theorem 1 If X is X7 then X is constructible from 0%.
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Theorem 2 0% is X7, And there are X7 sets of constructibility degree
strictly between 0 and 07.

Theorem 3 The following ¢ sets are equiconstructible with 0% :

(a){T | T € L and T is a tree on K of height k with a cofinal branch in a
cardinal-preserving extension of L}, for k an infinite successor cardinal of L.
(b){X Ck|X €L and X contains a CUB subset in a cardinal-preserving
extension of L}, for k reqular in L, k > wf.

(c){X C k| X €L and X is the set of ordinals < k which are admissible
relative to some real in a cardinal-preserving extension of L}, for k an un-
countable cardinal of L.

(d) {X C k| X € L and X is the intersection with k of a class which is
Aq-definable over L[R] without parameters, for some real R in a cardinal-
preserving extension of L}, where r is an L-cardinal greater than w.

Theorem 3 will be proved by “reducing” 07 to the sets mentioned. In fact
we shall need the following more general notion of “reduction”.

Definition Suppose that (Xo, X;) and (Yo, Y1) are pairs of disjoint subsets
of L. Then we write

(X07X1) —L (Yb,Yi)

iff there is a function F'in L such that

a€ Xg— Fla) €Yy

a€X;— F(a) €Y.

We write Xy instead of (X, X;) in case X is the complement (within
some constructible set) of X, and similarly for the Y’s. It is clear that if
(X0, X1) is nonconstructible, Xy U X; is constructible and (X, X;) —
(Yo, Y1), then (Yo, Y1) is also nonconstructible. In the proof of Theorem 3 we
shall obtain reductions in this sense of 0% to the sets mentioned.

Theorem 3 suggests that the Baumgartner-Harrington-Kleinberg result
should be viewed as a rare example of a nontrivial “solvable” ©¢* problem.
However it is not the only such example:

Theorem 4 If k is wl in the set described in Theorem 3 (d), then the re-
sulting set is constructible.



Proof of Theorem 1. Suppose that X is X¢” and therefore can be written
in the form

a € X iff ¢p(a) holds in a cardinal-preserving extension of L

where ¢ is ¥;.

Suppose that a belongs to X and choose a set of ordinals S in a set-
generic extension V[G] of V' such that ¢(a) is true in L[S] where L[S] is a
cardinal-preserving extension of L. Choose « so that X C L,, S C « and
the parameters in ¢ belong to L,. Let ¢ be a real generic over V|G| for a
constructible set-forcing such that a and the parameters in ¢ are coded by
c. The set S is countable in V[G][c]. Thus

Y, = {b e V[G][c] | bis a real and b codes both a set of ordinals S such that
L[S] is a cardinal-preserving extension of L satisfying ¢(a), together with a
witness for ¢(a)}

is nonempty. Moreover Y is I1} in ¢ and has an element b constructible from
the pair ¢, S. As c is set-generic over V[G] and therefore over L[S], the pair
b, ¢ does not construct 07. It follows from the Main Lemma of Harrington-
Kechris [6] that Y, has an element b in L[c*] = L[0%, ], and the latter is
a set-generic extension of L[0#]. As this applies to any element a of X, we
have:

a € X implies
¢(a) is true in a cardinal-preserving extension of L included in a set-generic
extension of L[0%].

Conversely, if ¢(a) is true in a cardinal-preserving extension of L included
in a P-generic extension L[0%] for some forcing P € L[0%], then this fact
is forced by some condition p € P and therefore ¢(a) is true in a cardinal-
preserving extension of L included in a P-generic extension of V. Thus the
above implication is in fact an equivalence, giving X € L[0#]. O

Remark. Suppose that X is X{” via the formula ¢, X is a subset of L,
for some countable ordinal o and the parameters in ¢ are countable. Then
the previous proof shows that if a belongs to X, then ¢(a) has a solution in
a cardinal-preserving extension of L contained in V. This is because in V



there exist generics for any countable constructible forcing. It follows that
in this special case, we can equivalently define X{* using cardinal-preserving

extensions of L which exist in V, and not only in a set-generic extension of
V.

Proof of Theorem 2. Notice that any set of the form
n € X iff IR(p(n, R) A Card™f = Card®),

where ¢ is I1} without parameters, is X{¥, as for reals R that preserve L-
cardinals, (n, R) holds exactly if it holds in L,r[R]. So to show that 0% is
YEP it suffices to show that it can be written in the above form.

In [3] a notion of “guess” at a finite sequence of Silver indiscernibles was
defined, together with a notion of “killing a guess”. It was shown that ac-
tual finite sequences of Silver indiscernibles cannot be killed, but there are
reals that preserve cardinals over L which kill all guesses which “explicitly
contradict” 07. Using these methods one can show:

If n does belong to 07 then there is a real R which preserves cardinals over
L such that R kills every guess which says that n does not belong to 0%.

As finite sequences of actual Silver indiscernibles cannot be killed, it follows
that n € 0% iff there is a real R which preserves cardinals over L such that

R kills every guess which says that n does not belong to 0%, and therefore
0% is X¢F.

In [3] it was also shown that there is a real R such that:

(1) R is nonconstructible and preserves L-cardinals.

(2) n € Riff R kills every guess which says that n does not belong to R iff
there exists a real S such that S preserves L-cardinals and S kills every guess
which says that n does not belong to S.

It follows that R is {7, and by (1), R has L-degree strictly between 0 and
0#. O

Proof of Theorem 3. (a) For « regular in L we let 7 (k) denote {T" | T' € L
and T is a tree on « of height x with a cofinal, cardinal-preserving branch},



where in general a set a is cardinal-preserving if L and Lla] have the same
cardinals. It is sufficient to show that 0 —; 7(k), when r is the L-
successor to an infinite L-cardinal A. For this purpose we again use the “guess-
killing” method of [3]. Let 7T, consist of all s € L,s : |s] — 2,A < [s] < K
such that:

() For all A\ <n <|s|,if Lg[s | n] E ZF~ +n = A" then Lg[s [ ] F Every
guess which says that n does not belong to 0% has been killed.

Using the methods of [3] it can be shown that T, has a cofinal cardinal-
preserving branch when n belongs to 0%. But note that by reflection, if T},
has a cardinal-preserving branch b then in L[b] every guess which says that
n does not belong to 0% has been killed, and therefore n really does belong
to 0%. Tt follows that n € 0% iff T, belongs to 7 (k), as desired.

(b) We first improve the result of part (a). Let x be the L-successor to a
regular L-cardinal A. Define:

T*(k) ={T € T (k) | T is A;-definable over L, from the parameter A and T’
has a cardinal-preserving, stationary, P(\)-preserving cofinal branch}
T*(k) ={T € T(k) | T is Ay-definable over L, from the parameter A and
T has a cardinal-preserving cofinal branch},

where b C & is stationary if in L[b] its intersection with (cof \)* is stationary,
and b is P(A)-preserving if L and L[b] have the same subsets of \. We
first show: 0% —p (7*(wd),~ T*(wk)). Let T,, n € w be the trees
defined in the proof of (a), when k = wl. Then n belongs to 0% iff T}, has a
cardinal-preserving, P(w¥)-preserving, cofinal branch. Moreover, if P, is the
L-definable forcing for producing such a branch, then for n in 0% this branch
can be required to satisfy the stronger version of (*) in which we require s [ 7
to code over Lg a generic for (P,)"s.

We aim to define a new sequence of trees 7', n € w. To do so we first
define f,(a) by induction on a < wk:
(1) If f.(@) has length > « for some & < « or L-cof (o) = w then f,(«a) is
the least element of T,, of length > « not in f,[a].
(2) If (1) fails then let [ be least such that L F ZF~ 4+ a = w9 and for some
least condition p € (P,)" and least name o in Lg : p I+ o is a CUB subset
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of a disjoint from f,,[b%], b denoting the generic branch through T), | a. If 3
does not exist then define f,(«) as in (1). Otherwise choose f,(«) to be the
least element of T}, of length « coding a (P,)?-generic extending p.

Now define Ty by o <p: B iff fu.(a) <z, fu(B). Suppose that b is a
P(wl)-preserving branch through 7,,. We claim that f,[b] N (cof w;)’ is a
stationary branch through 7. If not then (as b generically codes a P,-
generic) there is 3 > wl satisfying Lg F ZF~, p € (P,)" and o € Lg such
that p IF o is a CUB subset of wl disjoint from f,[b%], where b denotes
the generic branch through 7,,. Choose (3,p,0 to be least. By reflection
there is a € (cof wi)F Nwl so that f,(a) is defined as in the last part of (2)
above. Choose ¢ to be a branch through T;, generically coding a (P,)%-
generic extending p, where ¢ extends f,(«). (This is possible, using the
countability of 3 in L[0¥], as we can choose «a so that a = wfN Skolem
hull (o) in Lg, thereby enabling the extension from p,, to f,(«) to obey the
restraint imposed by p}, ). But now we have a contradiction, as o is a limit
of o¢, a CUB subset of wf, and f,(a) lies on c.

If n belongs to 0% then 7T}, has a generic branch and hence a cardinal-
preserving, P(wl)-preserving branch; by the above, T* has a stationary such
branch. If n does not belong to 07 then 7,, has no cardinal-preserving branch
and hence 7" has no cardinal-preserving branch, as such a branch b would
yield the cardinal-preserving branch f,[b] through 7,,. Thus it follows that
0F —p (T*(wh), ~ T+ (wh)).

The next lemma is from [9], reformulated in terms of our notion of reduc-
tion.

Lemma 5 (7*(wh), ~ T*(wl)) — 1 C(wk), where for L-reqular r, C(k) =
{X Ck|X €L and X contains a cardinal-preserving CUB subset}.

Proof of Lemma 5. Let T be a tree on wl of height w’ which is A;-definable
over L,z from the parameter wl. Then there is a gap 1 morass at w! in L
such that:

(1) To each o € U{S,, | « < wf} is associated a tree T, on o.
(2) Foroe S, T, =T | 0.
(3) Foro <y 7, T, = 7, }[T;] and for 0 <o 7, T, =T, | 0.

T



(Our notation is as follows: S, is the a-th level of the morass; 0 <; 7
means that o lies below 7 in the morass tree, with associated morass map
Tyr; 0 <o T means that ¢ and 7 lie on the same morass level and o is a
smaller ordinal than 7.)

To obtain this morass, start with the morass constructed in |7], thinning
out S,z to consist of o such that 7' [ o is uniformly Ay(L,) in parameter
wl. Then define T, for a(c) < wl to be the tree on o defined over L, with
parameter wi in the same way as 7T is defined over L, with parameter wi.

For o < w! let () be the maximum of S,. By induction on a < wf we
define X, C o(a). For any 0 € S, and i < «, o(i) denotes the unique ¢ <; o
such that ¢ € 5;, if it exists. Now let (5; | i < a) be the least a-sequence
in Ly(q) of pairwise Tj()-compatible elements of o(«) such that if o; = §; -
th element of S, then {i < o | For all j < i, 0;(i) € Xa(,6)} = 0. Then
X, consists of all o € S, such that there is ¢ <; 0, 75, cofinal, ¢ € Xy ()
together with each o;. (Ignore the o;’s if (5; | i < a) does not exist.)

Let X = (cof wy)t U {o € S.t | There exists 0 <y 0, 75, cofinal, & €
Xa@ }- If X contains a cardinal-preserving CUB subset C' then note that
o,7 € {8 | ordertype (C'N 3) = B} N (cof wy)¥ — o, 7 are T-compatible;
otherwise {i < w{ | URanger,(;, € X and URanger,;, € X} is empty,
by construction, in contradiction to the fact that C No, C N7 are CUB

in 0,7 of L-cofinality w¥. Therefore T has a cardinal-preserving branch.
Conversely, suppose that 7" has a cardinal-preserving, stationary, P(w¥)-

preserving branch b. For o € Sz, o of L-cofinality w{ and i < wf, let o
denote URanger,(;), (when (i) is defined). By construction of X, if we let
X (o) denote {i | 0° € X} then {X(0) | o € b*} generates a normal filter F,
where b* = {0 € b | 0 = ordertype (S, N o)} N (cof wy)L. But now there
is a cardinal-preserving forcing (over L[b]) to add a CUB subset of X, using
conditions which are closed, bounded subsets of X, making use of the fact
that the X (o) for o € b* generate a normal filter to prove wi-distributivity.

Thus if T belongs to 7*(wf) then X has a cardinal-preserving CUB sub-
set, and if T belongs to ~ 7**(wf) then X does not have a cardinal-preserving

CUB subset. This proves the Lemma.

Lemma 5 immediately implies: 0% —; C(wf). Now suppose that x is an
arbitrary L-regular cardinal greater than wl. We claim: C(wf) — C(k).
Indeed, let (C, | « singular in L) be an L-definable O-sequence; i.e., C,
is cofinal in « of ordertype less than a and if & is a limit point of C,, then
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Cy = C,Na (see [7]). Given a constructible subset X of wf define X* C  as
follows: For o < k of L-cofinality at most w¥ define ay = o, a; = ordertype
of C,,, ay = ordertype of C,,, ... until you first reach a; = o* less than
w¥. Then « belongs to X* iff this a* belongs to X. In addition X* contains
all ordinals less than x of L-cofinality greater than wl. If X* contains the
cardinal-preserving CUB subset C*, then X contains a cardinal-preserving
CUB subset C, obtained by choosing 3 to be the wi-th element of C* greater
than wl and letting C' consist of those a* obtained from « in a final segment
of C*NCg. And conversely, if X contains a cardinal-preserving CUB subset C'
then so does X*, obtained by forcing over L|C| with bounded, closed subsets
of X*. It follows that X contains a cardinal-preserving CUB subset iff X*
does, and therefore 0¥ —; C(wl) — C(k). This completes the proof of

(b).
(c) First note that in the proof of (b) we in fact showed
0% — 1 (C*(wy), ~ € (w7)),

where C*(wl) = {X C wl | X is Aj-definable over L, from parame-

ter wX and contains a cardinal-preserving, P(wf)-preserving CUB subset},
C*(wh) = {X C wl | X is Aj-definable over L.t from parameter wl and
contains a cardinal-preserving CUB subset}. Now define

Awk) ={Y | Y € L, Y C wF and Y = A(R) N wl for some cardinal-
preserving real R},

where A(R) = the class of R-admissible ordinals.
Lemma 6 (C*(wf),~ C*(wf)) — 1 A(w).

Proof of Lemma 6. Let X be a subset of the interval (wF,wl) which is
Ai-definable over Lz from the parameter wl. As in the proof of Lemma 5,

we may choose a constructible morass such that to each o € U{S, | a < w}
is assigned X, C o such that:

(1) For o € S,r, Xo = X No.
2)o<oT—= X, =X, No,0<17— X, =1, X,

oT



We set Y = {n | For some countable morass point o, n € [a(0), 0] is
Xy+-admissible and belongs to X,- U {a(0),0*}, where 0* = max Sy }-
Now consider the forcing P whose conditions are of the form (s, s*,t) where:

(i) s:|s| — 2, |s| <wFand n < |s| — (nis s | n-admissible iff  belongs
to Y).

(ii) t : [t| — 2, |t] < wl and wF < n < |t| — (nis t | n-admissible iff 7 is
X-admissible and belongs to X U {wi'}).

(iii) Let P,z consist of ¢ as in (ii) and let G,r denote a P, c-generic. Then s*
is restraint for coding G: using conditions s as in (i).

GLAJL GL/.)L . .
Thus P factors as F,r « B, ' where P, ' codes the generic G,¢ using
conditions s as in (i) together with the usual restraints from almost-disjoint

UJL . . . . . .
coding. P,r I- P,™" is wi-distributive and wj-cc. Thus P is wy-preserving
if P,r is wl-distributive. If X contains a P(w)-preserving CUB subset then
the wi-distributivity of P,. holds in such a P(wl)-preserving extension, and

hence in L. And the Pf uJlL—genelric G, C wlL can be coded by a cardinal-
preserving real preserving admissibles, proving that Y belongs to A(wF).
Conversely, if A(R) Nwl =Y for some cardinal-preserving real R then X
contains the cardinal-preserving CUB subset of wl consisting of all o < w¥
such that L,[R] is ¥;-elementary in L,c[R]. This proves the Lemma, and
therefore the reduction 0% — A(wl).

Now notice that in the above we produced a constructible sequence (Y, |
n € w) such that n belongs to 0% iff Y,, = A(R) N wF for some cardinal-
preserving real R, and in addition the sets Y, are A; over L,r from the
parameter w!. Now for any uncountable L-cardinal » define Y,* over L, in the
same way that V), is defined over L,r. Then n belongs to 0% iff Y,* = A(R)Nx
for some cardinal-preserving real R. The reduction 0% — A(k) therefore
holds for every uncountable L-cardinal . This proves (c).

(d) Let D(k) denote the set described in the statement of (d). We show:
(C*(wh), ~ C**(wl)) — 1 D(wl). Suppose that X is a subset of the interval
(wi',wy) which is A;-definable over L,; from parameter wy'. If X contains
a cardinal-preserving, P(wf)-preserving CUB subset C' then in L[C] the set



X U {wf} obeys the Condensation Condition at wf (see [5], Section 8.1).
And in L we may define Y C w! such that Y U {wf} U X U {wk} obeys
the Condensation Condition at w in L, and hence in L[C]. Thus by the
A;-Coding Theorem (Section 8.1 of [5]), Y U {wi} U X U {wl} belongs to
D(wk). Conversely, if Y U{w{}UX U{wl} belongs to D(w¥) for some Y C wf
then X contains a cardinal-preserving CUB subset. Thus we have the desired
reduction. As in the last part of the proof of (c), we also obtain the reduction
0% —, D(k) for arbitrary L-cardinals x > wf. This completes the proof of
Theorem 3. O

Proof of Theorem 4. This follows from the Condensation Condition in
Section 8.1 of [5]. Suppose that A is a constructible subset of wl. We say
that an extensional set x of ordinals preserves A if (z, €, ANZ) is isomorphic
to (x,€,ANx), where T denotes the transitive collapse of x. Suppose that
A satisfies the condition

() In L, the set of countable subsets of wy which preserve A is stationary.

Then A obeys the Condensation Condition at w and therefore by the A;-
Coding Theorem (Theorem 8.3 of [5]), A is the intersection with wf of a
class which is A;-definable over L[R] without parameters, for some cardinal-
preserving real R. Thus A belongs to D(wl). Conversely, () implies the
Condensation Condition at w and therefore the latter provides a constructible
criterion for a set A to belong to D(w¥). (This argument is special to wi,
as at cardinals greater than wl, (x) is strictly weaker than the Condensation

Condition.) O
Some Open Questions

1. Is there a reduction 7 (wl) — 1 C(wl)? If so, the arguments of this paper
could perhaps be simplified.

2. What happens if we weaken cardinal-preservation to the preservation of
only some cardinals? For example, is the set

C'(wh)={X € L | X C w! and X has a CUB subset in an extension of L
which preserves wf, wk}

constructible?

3. What is the situation with the tree problem at s, when trees on k are
required to have levels of size less than «?

10



References

[1] Baumgartner J., Harrington L. and Kleinberg E. Adding a closed un-
bounded set, Journal of Symbolic Logic, Vol. 41, pp. 481-482, 1976.

[2] Devlin, K. and Jensen, R., Marginalia to a theorem of Silver, Springer
Lecture Notes 499, pp. 115-142, 1975.

[3] Friedman S. The I1i-singleton conjecture, Journal of the AMS, Vol. 3,
pp. 771-791, 1990.

[4] Friedman, S. Generic saturation, Journal of Symbolic Logic, Vol. 63, pp.
158-162, 1998.

[5] Friedman, S. Fine Structure and Class Forcing, de Gruyter Series
in Logic and its Applications, 2000.

[6] Harrington L. and Kechris A. T1i-singletons and 0%, Fundamenta Math-
ematicae 95, 1977, no. 3, 167-171.

[7] Jensen R. The fine structure of the constructible hierarchy, Annals of
Mathematical Logic, 1972.

[8] Martin D. A. and Solovay R. M. A Basis Theorem for 3% Sets of Reals,
Annals of Mathematics, 1969.

[9] Stanley M. Forcing closed unbounded subsets of ws, to appear.

11



