Vaught's Conjecture and Absoluteness

Let © be a sentence of L, and let E(p) denote the isomorphism
relation on its countable models.

Then E(y) is analytic and for any analytic equivalence relation E
we can define:

E is perfect if E has a perfect set of classes.
E is scattered if E does not have a perfect set of classes.
E is trivial if E has only countably many classes.

Question: Are these notions absolute?
Are they absolute when E is of the form E(p) for some ¢?
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Proposition

“Perfect” is a 3 property (of a code for E). Therefore both
“perfect” and “scattered” (the negation of “perfect”) are absolute.

Proof. E is perfect iff
There exists a perfect tree T such that for all x #y in T, ~ (xEy).

This is £3. O
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Theorem

In L there is an analytic E which is scattered and nontrivial but
becomes trivial after wt is made countable.

Proof. A (X,-) master code is a real coding the theory of some L,.

The set of master codes is N}, as to be a master code is to satisfy
an arithmetical property together with the assertion that the model
described by the master code is wellfounded.

But now define;
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xEy iff x, y are not master codes or x = y.

This is analytic and has exactly w! classes.
If wt is collapsed then E becomes trivial. OJ

However triviality is absolute for analytic equivalence relations of
the form E(¢p), using Scott analysis.
I'll sketch how this works using the Morley tree T (i) for .
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Suppose that E(yp) is scattered (an absolute notion).

Let Fy be a countable fragment of L,,,, containing ¢.
By scatteredness there are only countably many Fy-types consistent
with ¢.

Let F; be a larger countable fragment containing the conjunctions
of each of the Fy-types consistent with ¢. Again, there are only
countably many F;-types consistent with .

Continue in this way for w; steps, taking the fragment F,.1 to
contain F, and the conjunctions of the F,-types consistent with ¢,
and F) the union of the F,, a < X for limit A.
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Now that we have the fragments F,, o < w; we define the Morley
tree T () as follows:

At level 0 of the tree we place all complete Fy-theories containing .

At level oo + 1 of the tree we place all complete F;-theories which
extend a non Ng-categorical theory on level « (i.e. a theory on level
a with a non-atomic type).

At a limit level A < w; we take the unions of all branches through
the earlier levels. Again by scatteredness, this is still countable.

This completes the definition of the Morley tree.

Each countable model of ¢ is the unique model of some terminal
node of T (). Thus ¢ is a counterexample to Vaught's Conjecture
exactly if 7 () has height w;.
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Also note that if we define
M E, N ifft M, N have the same F,-theory

then E(p) (the isomorphism relation for countable models of ¢) is
the intersection of the Borel equivalence relations E,. Thus

(En | @ < w1) is a Burgess approximation to E(y), i.e. a descending
sequence of Borel equivalence relations with intersection E(y).

Now why is having only countably many models absolute?



Vaught's Conjecture and Absoluteness

Proposition

The Burgess approximation (E, | o < wy) to E(yp) is:

(a) Xi-definable, i.e. there is a X1 function (in a fixed parameter
coding @) that takes a code for an ordinal o to a Borel code for E,,.
And it is:

(b) Non-hesitating: If E,, = E,11 then E, = E(p).

(b) holds because E, = E,1 implies that all models of theories on
level o of the Morley tree satisfy the same F,-types and therefore
all such theories are Ny-categorical.



Vaught's Conjecture and Absoluteness

Hesitation of the master code example:
xEy iff x, y are not master codes or x = y
xE,y iff x,y are not among the master codes in L, or x =y

If o is the wy of Lg then E, = Eg, so there are arbitrarily long
hesitations in this Burgess approximation.

Question. Are we talking about model theory or more generally
about Polish group actions?

l.e., if E is an analytic equivalence relation induced as the orbit
equivalence relation of a Borel action of a Polish group on a Polish
space, is triviality (having only countably many classes) absolute?
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One approach to this (suggested to me by André Nies) is to try to
reduce an arbitrary orbit equivalence relation to a notion of
equivalence on metric structures and then apply an analogous
Scott/Morley analysis for metric structures.

This would be great and | hope it works!

Instead | will take a different approach, looking beyond orbit
equivalence relations to analytic equivalence relations in general.
Recall that orbit equivalence relations have only Borel classes.
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Definition

Let E be an analytic equivalence relation. Then E is weakly tame if
there is a £5 function f (in a parameter for E) such that for each
x, f(x) is a Borel code for the E-class of x.

E is tame if this holds absolutely, i.e. f has this property in all
outer models as well.

Example (Sami, as modified by me):
xEy iff x, y compute the same master codes.

Then in L, E is weakly tame but not tame.
Moreover, E has only Borel classes of bounded rank.
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(Becker) If E is an orbit equivalence relation (induced by a Borel
action of a Polish group on a Polish space) then E is tame.

Theorem

Suppose that E is a tame analytic equivalence relation. Then
triviality (having only countably many classes) for E is absolute.
And E has a ¥1-definable, non-hesitating Burgess approximation.
In particular this holds for orbit equivalence relations.

And using a theorem of Stern:



Vaught's Conjecture and Absoluteness

Theorem

Suppose that E is a tame analytic equivalence relation with classes
of bounded Borel rank. Then E obeys Silver's dichotomy: either E
has a perfect set of classes or only countably many classes.

This theorem follows from the previous one as Stern showed that
the conclusion of this theorem holds for E (without tameness) after
making XN, countable; then apply the previous theorem and
absoluteness.
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Before discussing the proofs of the above theorems, | pause to
advertise the generic Morley tree g7 () and its use to give a new
proof of:

Theorem

(Harrington) If ¢ is a counterexample to Vaught's Conjecture then
© has models in Ny of Scott ranks cofinal in w;.

Proof (Baldwin-SDF-Koerwien-Laskowski) Let gT () be the
Morley tree for ¢ in V[G], where G is generic for collapsing w; to
w. So the w;y of V[G] is the wy of V.
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By the scatteredness of ¢, g7 () cannot depend on the choice of
generic G so in fact g7 () is a tree in V of height wY. And for
limit o, any model of a theory on the a-th level of g7 (¢) has
Scott rank at least «, so we need only show that the theories on
the generic Morley tree g7 () do indeed have models in V.

Consider a pair (F, T) where T is on the generic Morley tree at
some level  and F = F,, the fragment of L,,,., associated to that
level. The theory T is generically atomic, i.e. atomic after F is
made countable.
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Now using a chain of countable elementary submodels, we can
write (F, T) as the direct limit of pairs (I:_,-, 7',-), i < wi, where Fj is
a countable fragment of L, and T; is an atomic theory in Fj. Let
M; be the countable atomic model of T;. Then we have
embeddings of model-fragment pairs

mij - (Mi, Fi) = (M;, Fj)
which are elementary in the sense that
M 1= o (m) iff Mj & () (i ().

.e., not only the model M; but also the fragment F; gets embedded
by mij.

The direct limit of the countable models M; (i < w;) is a model in
N; of our given theory T on the generic Morley tree, as desired. (J
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Now back to absoluteness.

Theorem

Suppose that E is a tame analytic equivalence relation. Then
triviality for E is absolute.

Proof. Let f witness tameness.

If E has only countably many classes we can choose X = (x,|n < w)
such that each class contains x, for some n and ¢ = (¢y|n < w) so
that ¢, = 7(x,) is a Borel code for the class of x, for each n.

Thus if E has only countably many classes we have:
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(%) There exist X = (xp|n < w), € = (¢cp|n < w) and a < wy such
that:

1. For each n, ¢, = f(x,) is a Borel code for the E-class of x, of
Borel rank < a.
2. If B, is the Borel set coded by c, then the Bc,’s cover the space.

Conversely, if () holds then as the B.,’s in (*) are the E-classes of
the x,'s and cover the space, E has only countably many classes.

Finally, () is 1 and therefore absolute. [J
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Now that we know that having countably many classes is X3, we
can produce a X j-definable, non-hesitating Burgess approximation
for E.

Begin with the representation
xEy iff T(x,y) is illfounded
and define relations
R.(x,y) iff T(x,y) has rank at least a.

There is a ~1-definable function that produces a Borel code for R,
from a code for «. Burgess showed that R, is an equivalence
relation E, for unboundedly many «, and by absoluteness it follows
from this that any analytic equivalence relation E has a

¥ ;-definable Burgess approximation (E, | o < w1).
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Now we define a non-hesitating, ¥1-definable Burgess
approximation (E/, | o < wy):

If E has only countably many classes then by absoluteness this is
the case in L and so () above will hold for some L-countable «; in
this case we can take the trivial Burgess approximation E/, = E for
all o, as E has a X ;-definable Borel code.

Otherwise, set Ey = Eo, and if E/, is defined choose E/ ; to be Eg
where 3 is least so that Eg is properly contained in E/. By

absoluteness this least [ is less than wlL[C] for any code ¢ for o and
therefore we can compute a Borel code for E/; via a ¥; function
applied to c. The resulting Burgess approximation is ¥1-definable
and non-hesitating, as desired.

(Remark: This can be made uniform.) O
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Some final remarks and questions

1. Sami showed that an orbit equivalence relation with classes of
bounded Borel rank is in fact Borel; Gao showed that this is not
true for arbitrary analytic equivalence relations, even when all
classes have size at most 2.

2. There are nontrivial, scattered analytic equivalence relations with
only Borel classes, with both Borel and non-Borel classes and with
only non-Borel classes.

3. As the triviality of an analytic equivalence relation is a ¥3
property, it is consistent relative to a reflecting cardinal (between
inaccessible and Mahlo) that triviality is set-generically absolute for
all analytic equivalence relations. Is an inaccessible enough for this?
And is it consistent that triviality for analytic equivalence relations
is absolute for class-forcing?
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4. Let =, be elementary equivalence for sentences of rank less than
a. Suppose that =, equals =41 on models of ¢, for some a.
Must =, equal isomorphism on models of ©? This is the case if ¢
does not have a perfect set of models.

And finally:
Is Vaught's Conjecture absolute?

It is consistent that it is set-generically absolute (as it is a ¥}
statement), but can one rule out that 07 is the least L-degree of a
counterexample?



