The Outer model programme and Quasi lower bounds

Let LC denote a large cardinal property

Two important Jensen programmes:

A. Inner model programme. Show that models which witness LC have L-like inner models which also witness LC.

B. Core model programme. Define an L-like inner model K such that if K is a bad approximation to V then there is an inner model which witnesses LC

Consequences:

Inner model programme:

 $\mathsf{Con}(\mathsf{ZFC} + \mathsf{LC}) o \mathsf{Con}(\mathsf{ZFC} + \mathsf{LC} + \varphi) \ (\varphi \ \mathsf{an} \ \mathit{L}\text{-like property})$

Core model programme:

 $Con(ZFC + \varphi) \rightarrow Con(ZFC + LC)$ (consistency lower bounds)

The Outer model programme and Quasi lower bounds

The Jensen programmes are difficult

In this talk we discuss two easier alternatives

A*. Outer model programme. Show that models which witness LC have L-like outer models which witness LC

The Outer model programme is not new First major result was proved by ... Jensen! $Con(ZFC+ a Ramsey) \rightarrow Con(ZFC+ a Ramsey +GCH)$

The first proof of this using inner models came much later (Dodd-Jensen)

B*. Quasi lower bound programme

This is new, combines A* with work of Neeman

A. Obtaining L-like models with Large Cardinals via the Inner model programme

Example 1: Inaccessible cardinals

Easy: If κ is inaccessible, then $L \vDash \kappa$ inaccessible.

Example 2: Measurable cardinals

Scott: $L \models$ There is no measurable cardinal

What inner model shall we use?

Relativised L: $\mathcal{L}_{\alpha}^{E} = (L_{\alpha}^{E}, \in, E_{\alpha}), \ \alpha \in \mathsf{Ord}$

$$\begin{array}{l} \mathcal{L}_{0}^{E} = (\emptyset,\emptyset,\emptyset) \\ \mathcal{L}_{\alpha+1}^{E} = (\mathsf{Def}(\mathcal{L}_{\alpha}^{E}),\in,E_{\alpha+1}) \text{ (in fact } E_{\alpha+1} = \emptyset) \\ \mathcal{L}_{\lambda}^{E} = (\bigcup_{\alpha<\lambda} \mathcal{L}_{\alpha}^{E},\in,E_{\lambda}) \end{array}$$

Desired inner model is $L[\langle E_{\alpha} \mid \alpha \in \text{Ord} \rangle] = L[E]$, where the nonempty E_{α} 's are embeddings

Theorem

Suppose that there is a measurable cardinal. Then there exists

$$E = (E_{\alpha} \mid \alpha \in Ord)$$
 such that:

- 1. For limit λ , E_{λ} is either empty or an embedding $E_{\lambda}: L_{\alpha}^{E} \to L_{\lambda}^{E}$ for some $\alpha < \lambda$.
- 2. $L[E] \models There is a measurable cardinal.$
- 3. $E \upharpoonright \kappa$ is definable over $L_{\kappa}[E]$ uniformly for infinite cardinals κ .
- 4. Condensation: With some restrictions,
- $M \prec \mathcal{L}_{\alpha}^{E}$ implies M is isomorphic to some $\mathcal{L}_{\bar{\alpha}}^{E}$.
- 5. $L[E] \models \diamondsuit$, \square and (gap 1) Morass
- $3 \rightarrow locally definable wellordering$
- $4 \rightarrow GCH$

This Theorem has been generalised after great effort to stronger large cardinal properties.

Why is the Inner Model Program so difficult?

Condensation: $M \prec \mathcal{L}_{\alpha}^{E} = (L_{\alpha}^{E}, \in, E_{\alpha})$ implies M is isomorphic to some $\mathcal{L}_{\bar{\alpha}}^{E} = (L_{\bar{\alpha}}^{E}, \in, E_{\bar{\alpha}})$.

With Gödel's methods, M is isomorphic to some $\mathcal{L}_{\bar{\alpha}}^F = (L_{\bar{\alpha}}^F, \in, F_{\bar{\alpha}})$

Goal: $\mathcal{L}_{ar{lpha}}^{\it F}=\mathcal{L}_{ar{lpha}}^{\it E}$

Only known technique: Comparison method

Let \bar{M} , \bar{N} denote $\mathcal{L}^F_{\bar{\alpha}}$, $\mathcal{L}^E_{\bar{\alpha}}$. Construct chains of embeddings

$$\begin{array}{l} \bar{M} = \bar{M}_0 \to \bar{M}_1 \to \bar{M}_2 \to \cdots \to \bar{M}_{\lambda} \\ \bar{N} = \bar{N}_0 \to \bar{N}_1 \to \bar{N}_2 \to \cdots \to \bar{N}_{\lambda} \end{array}$$

until $\bar{M}_{\lambda} = \bar{N}_{\lambda}$. Then conclude that $\bar{M} = \bar{N}$.

The embeddings come from iteration.

Key question: Is
$$\bar{M}$$
 iterable, i.e., are the models $\bar{M}=\bar{M}_0\to\bar{M}_1\to\bar{M}_2\to\cdots\to\bar{M}_\lambda$ well-founded?

Iterability problem. Assuming the existence of large cardinals, show that there are iterable structures $M=(L_{\alpha}^{E},\in,E_{\alpha})$ which contain large cardinals.

Solved only up to the level of Woodin cardinals

The Outer model programme

Obtaining L-like models with Large cardinals via the Outer model programme.

Theorem

Suppose that there is a superstrong cardinal. Then there exists an outer model L[A] of V (obtained by forcing) such that:

- 1. A is a class of ordinals.
- 2. $L[A] \models There is a superstrong cardinal.$
- 3. (with David Asperó) $A \cap \kappa^+$ is uniformly definable over $L_{\kappa^+}[A]$ for regular cardinals $\kappa > \omega$.
- 4. (with Peter Holy) Condensation: With some restrictions, $M \prec (L_{\alpha}[A], \in, A \cap \alpha)$ implies M is isomorphic to some $(L_{\bar{\alpha}}[A], \in, A \cap \bar{\alpha})$.
- 5. $L[A] \models \diamondsuit$, \square and (gap 1) Morass

What is a superstrong cardinal?

The Outer model programme

```
Suppose i: V \to M.
Critical point of j = \text{least ordinal } \kappa \text{ such that } j(\kappa) \neq \kappa.
i is \alpha-strong iff V_{\alpha} \subseteq M
Superstrong = i(\kappa)-strong
Hyperstrong = i(\kappa) + 1-strong
n-superstrong = i^n(\kappa)-strong
\omega-superstrong = i^{\omega}(\kappa)-strong
(i^{\omega}(\kappa)+1)-strong is inconsistent!
\omega-superstrong is at the edge of inconsistency
\kappa is n-superstrong iff i is n-superstrong
(similarly for hyperstrong, \omega-superstrong)
```

The Outer model programme

L-like is consistent with superstrong

L-like without \square is consistent with all large cardinals

Conclusion:

Are there L-like models past a superstrong?

Jensen: Subcompact $\rightarrow \Box$ fails (subcompact is between superstrong and hyperstrong)

Theorem

With \Box omitted, the previous Theorem (stated for superstrong) also holds for ω -superstrong.

The Core model programme

B. Core model programme. Define an L-like inner model K such that if K is a bad approximation to V then there is an inner model witnessing LC

Equivalently, K should have the following property:

If there is no inner model with a certain large cardinal property then K is a $good\ approximation\ to\ V$

Examples of "good approximation":

Covering: Many sets of ordinals in V are contained in sets in K of the same size

Weak covering: κ^+ of V equals κ^+ of K for many cardinals κ Rigidity: There is no nontrivial elementary embedding from K to K

The Core model programme

Example: Dodd-Jensen core model K_{DJ} for a measurable

GCH and \square hold in K_{DJ} If there is no inner model with a measurable then Covering holds for K_{DJ}

Conclusion: If GCH fails at a singular strong limit cardinal or \square fails at a singular cardinal then there is an inner model with a measurable

Problem: The core model programme is even more difficult than the inner model programme!

A possible alternative:

B*. Quasi lower bounds

Motivating example: Neeman-Schimmerling work on PFA fragments

PFA = Proper forcing axiom = Martin's axiom for proper forcings

 $\mathsf{Baumgartner} \colon \mathsf{Con}\big(\mathsf{ZFC} + \mathsf{\,a\,\,supercompact}\big) \to \mathsf{Con}\big(\mathsf{ZFC} + \mathsf{PFA}\big)$

Popular Conjecture: The converse holds (beyond current core model techniques)

A forcing P is κ -linked iff it is the union of κ -many pairwise compatible subsets

Theorem

(Neeman-Schimmerling) (a) $Con(ZFC+ a \Sigma_1^2 indescribable) \rightarrow Con(ZFC+ PFA for c-linked forcings).$ (b) More generally, $Con(ZFC+ a \Sigma_1^2 indescribable n-gap) \rightarrow Con(ZFC+ PFA for c^{+n}-linked forcings).$

Using L, Neeman obtained a consistency lower bound for (a):

 $Con(ZFC + PFA \text{ for } c\text{-linked forcings}) \rightarrow Con(ZFC+ a \Sigma_1^2 \text{ indescribable})$

```
[(Neeman-Schimmerling) (a) Con(ZFC+ a \Sigma_1^2 indescribable) \rightarrow Con(ZFC+ PFA for c-linked forcings).
(b) More generally, Con(ZFC+ a \Sigma_1^2 indescribable n-gap) \rightarrow Con(ZFC+ PFA for c^{+n}-linked forcings).]
```

Neeman and Schimmerling conjecture the following:

Con(ZFC + PFA for
$$c^+$$
-linked forcings) \rightarrow Con(ZFC+ a Σ_1^2 indescribable 1-gap)

Problem: Σ_1^2 indescribable 1-gaps have consistency strength beyond a superstrong, and therefore are beyond the reach of current core model theory!

Neeman obtained a partial result:

Theorem

(Neeman) Suppose that V is a "fine structural model" and PFA for c^+ -linked forcings holds in a proper forcing extension of V. Then in V there is a Σ_1^2 indescribable 1-gap.

V is Neeman fine-structural iff V is built from extenders, the extender-hierarchy on V satisfies enough condensation and is acceptable, and V satisfies enough of Jensen's \square principle

Problem: Are there any Neeman fine-structural models with a Σ_1^2 indescribable 1-gap? Are there any with large cardinal properties beyond Woodin cardinals?

Observation (Peter Holy): Extenders are irrelevant to Neeman's proof; one only needs enough of Jensen's \square principle and *some* hierarchy on V which satisfies enough condensation and is acceptable.

Call such models sufficiently L-like

Now we invoke the techniques of the outer model programme:

Theorem

(F-Holy) Suppose that there is an ω -superstrong cardinal in V. Then some forcing extension of V is both sufficiently L-like and contains an ω -superstrong cardinal.

(Enough \square is easy, enough condensation is harder, acceptability is the hardest)

Now we obtain the following quasi-lower bound result.

Corollary

(F-Holy) It is consistent with a proper class of subcompact cardinals that PFA for c^+ -linked forcings fails in all proper forcing extensions.

(Subcompacts are a little bit weaker than Σ_1^2 indescribable 1-gaps.)

Thus for all practical purposes, PFA for c^+ -linked requires more than subcompacts; this is a *quasi lower bound* result

Conclusion:

Consistency lower bounds need Core model theory Consistency quasi lower bounds may only need Outer model theory

Questions

A. Inner model theory

Assume that there is a superstrong. Is there an inner model satisfying GCH with a superstrong?

A*. Outer model theory

Is it consistent with a superstrong to have a definable wellorder of $H(\lambda^+)$ for all singular λ ?

B. Core model theory

Does the failure of \square at a singular cardinal imply the existence of an inner model with a superstrong?

B*. Quasi lower bounds

Is it consistent with a superstrong that \square holds at all singular cardinals in all (proper) forcing extensions?

I congratulate Ronald on the occasion of this excellent meeting!