
Generic AbsolutenessJoan Bagaria and Sy D. FriedmanAbstractWe explore the consistency strength of �13 and �14 absoluteness,for a variety of forcing notions.IntroductionShoen�eld's absoluteness theorem states that a �12 predicate is true of a realin a ground model exactly if it is true of the same real in any forcing extension.However, this is not true for �13 predicates. Indeed, if we add a Cohen realto L, then the sentence \There exists a non-constructible real" is �13 and,while failing in L, it holds in the generic extension. In this paper we shallmainly investigate the strength of generic absoluteness for �13 predicates.The consistency strength of �13 absoluteness under ccc forcing extensions isjust ZFC ([B 3]). But by extending the class of ccc forcing extensions, weobtain stronger absoluteness properties. Our aim in this paper is to explorethe large cardinal strength of these properties.Our notation is largely standard. We write `h(s) for the length of asequence s. IfX is a set, [X]<! is the set of all �nite subsets of X. We denoteby KP Kripke{Platek set theory including the axiom of in�nity. Transitivemodels of KP are called admissible sets.We call the set-theoretical universe �1n-absolute with respect to somegeneric extension if each �1n or �1n predicate true of a real in the groundmodel is true of the same real in the extension. We call it �1n-absolute if each�1n or �1n sentence (without parameters) holding in the ground model holdsin the extension. (These de�nitions should be contrasted with the \2-step"absoluteness of [W], where it is required that absoluteness hold not onlybetween V and V [G], but between V [G] and V [G][H] for successive genericextensions V � V [G] � V [G][H].)We use Solovay's almost-disjoint coding ([J-S]), which we shall review inthe next section. We shall also use the method of Baumgartner, Harrington,and Kleinberg ([B-H-K]) to shoot a club through an arbitrary stationarysubset of !1, while preserving !1.Almost disjoint codingThe following account of Solovay's almost-disjoint coding is due to A. Math-ias, whom we thank for letting us include it here.First, let hsi j i 2 !i be a recursive enumeration of <!2, the set of �nitesequences of 0's and 1's, such that each such sequence is enumerated beforeany of its proper extensions. For any subset a of !, let ~a : ! �! 2 be1



the characteristic function of a. Fix a recursive partition of ! into in�nitelymany in�nite pieces Xi (i 2 !). For a � ! and i 2 !, de�nefa =df fj j ~a� `h(sj) = sjgfai =df fj j ~a� `h(sj) = sj and `h(sj) 2 XigThus each fa is a member of a well-known perfect family of pairwisealmost disjoint in�nite subsets of !, and is the disjoint union of the in�nitelymany in�nite sets fai .For subsets a and b of !, set b� a =df fi 2 ! j b \ fai is �niteg:Secondly, let A � P(!) and let � : A �! P(!). De�ne the graph of � byG =df fha; iija 2 A; and i 2 �(a)g:We shall use Solovay's coding to add a set b � ! by a c.c.c. forcing suchthat 8a2A b� a = �(a):A condition will be a pair hs; gi where s 2 [!]<!, and g 2 [G]<!, and thepartial ordering is given byht; hi 6 hs; gi i� s � t; g � h; and 8ha; ii2 g (t \ fai � s):Any two conditions with the same �rst part are compatible, so this forcingis c.c.c. The �rst part s of a condition describes a �nite subset of the set bto be added; to place ha; ii into the second part is to give a promise that nofurther elements of b will be in fai . By standard density arguments, b \ faiwill be �nite whenever i 2 �(a), and in�nite (since the family of sets fai ispairwise almost disjoint) whenever i =2 �(a). Thus this forcing achieves whatis promised.!1 inaccessible to realsTheorem 1 Suppose that !1 = !L1 . Then �13-absoluteness fails for someforcing that preserves !1.Proof: For each countably in�nite ordinal � let g� be the <L-�rst func-tion mapping ! onto �. For each n, �x �n such that f� j g�(n) = �ng isstationary.Consider a �xed n. By [B-H-K], we may add, preserving !1, a club subsetCn of that set. By Solovay, we may add a real b such that whenever a 2 L isa subset of ! that codes a ordinal, b � a codes the �rst member of Cn thatis strictly larger than that ordinal.Lemma 1 Let M = L�[b] be a countable admissible set such that:M j= every ordinal is constructibly countable:Then � 2 Cn. 2



Proof: Let � < �, and let c 2 L� be a subset of ! that codes �. Then b�ccodes a member � of Cn greater than �. b� c 2M , and so by admissibility,� can be recovered inside M , and so is less that �. As Cn is closed, � 2 Cn.2 Let '(�; b) be the formula:L�[b] j= KP + every ordinal is constructibly countable:Our construction has added a real b such that8�1 < �2 < �3 < !1[('(�1; b)^'(�2; b)^'(�3; b))) L�3 [b] j= g�1(n) � g�2(n)]:Translated into codes of countable admissible sets, that is a �12 assertion#(b; n) about b and the natural number n. So the statement 9b #(b; n) is a�13 sentence. If �13-absoluteness holds, then this sentence will be true in theground model, witnessed by B say. Consider L!1[B]: it is admissible andbelieves that every ordinal is constructibly countable. There is, therefore, aclub Dn, namely f� < !1 j L�[B] ��! L!1 [B]g, lying in the ground model,such that each � 2 Dn satis�es the predicate '(�;B).If for each n we can �nd such a club Dn, then the intersection Tn<! Dnwill be a club, D say. But then for �1 < �2, both in D, for every n, g�1(n) =g�2(n), an absurdity. Thus there is an n for which �13 absoluteness fails forthe sentence 9b #(b; n). 2The above argument relativises easily to show that for each a � !, �13(a)-absoluteness for !1-preserving forcing implies that !1 > !L[a]1 . Hence,Corollary 1 �13-absoluteness for !1-preserving forcing implies that !1 isinaccessible to reals, i.e., for every a � !, !1 > !L[a]1 .Proper and semi-proper forcingWe could try to strengthen the previous result by restricting the class offorcing notions to those that preserve stationary subsets of !1, or even tosemi-proper forcing.The notion of semi-proper forcing is due to Shelah and generalizes hisown weaker notion of proper forcing, itself a generalization of ccc and �-closed forcing notions.Thus, semi-proper posets include all proper posets, plus other well-knownforcing notions, like Prikry forcing.A forcing notion P is semi-proper if for some large-enough regular cardinal� (e.g., larger than 22jPj ), there is a club C � [H(�)]! such that for all N 2 Cand all p 2 N \ P, there is a q � p which is (P; N)-semi-generic, i.e., for allP-names � in N , if 
P\� 2 !V1 ", then q 
P\� 2 N".Hence, semi-proper forcing preserves !1. In fact it preserves stationarysubsets of !1 (see [F-M-S]). 3



�13-absoluteness for semi-proper forcing does not imply that !1 is inacces-sible in L. This follows from results of Goldstern-Shelah [G-S] and Bagaria[B 2]. Let us call a regular cardinal � re
ecting if for every a 2 H(�) andevery �rst-order formula '(x), if for some cardinal �, H(�) j= '(a), thenthere exists a cardinal � < � such that H(�) j= '(a).Notice that if � is re
ecting, then it must be inaccessible. If � is re
ecting,then � is re
ecting in L. The consistency strength of a re
ecting cardinal isbelow a Mahlo.Suppose � is re
ecting. It follows from [G-S] that there is an !1-preservingiteration of length � over L of semi-proper forcing notions that forces thebounded semi-proper forcing axiom. But in [B 2] it is shown that the boundedsemi-proper forcing axiom implies �13-absoluteness with respect to all semi-proper forcing extensions.However, even for the more restricted class of proper forcing notions,�13-absoluteness implies that either !1 or !2 is inaccessible in L.Recall that a poset P is proper if for some large-enough regular cardinal�, there is a club C � [H(�)]! such that for all N 2 C and all p 2 N \ P,there is a q � p which is (P;N)-generic, i.e., for all P-names � in N , if
P\� is an ordinal", then q 
P\� 2 N".All ccc and all �-closed posets are proper. Also, properness is preservedby countable-support iteration. In particular, any �nite iteration of ccc and�-closed posets is proper.The following result follows from work in [Ba]; we thank B. Veli�ckovi�c forcalling it to our attention.Theorem 2 Suppose �13-absoluteness holds for proper forcing. Then, either!1 is inaccessible in L, or !2 is.Proof: If !2 is not inaccessible in L, then there is a Kurepa tree T in L(i.e., a tree of height !1, with countable levels, and @2-many branches) whichremains Kurepa in V (see [J], 24). Further, T is �1-de�nable over L!1 .Let Q1 = Q0 � Coll(!1; !2), where Q0 is the ccc forcing for adding !2Cohen reals, and Coll(!1; !2) is the �-closed poset for collapsing !2 to !1with countable conditions.Claim: Every branch of T in V Q1 is already in V .Proof of Claim: Since Q0 has property K (i.e., every uncountable sub-set of Q0 contains an uncountable pairwise compatible set) it adds no newbranches to T (see [Ba], 8.5). Thus, it will be enough to show that everybranch of T in V Q1 is already in V Q0.But since V Q0 j= 2@0 > @1, and since Coll(!1; !2) is �-closed, no newbranches to T are added by Coll(!1; !2) (see [Ba], 8.6). This proves theClaim.Let Q2 = Q1 �PT, where PT is the forcing that specializes T . Namely, letfb� : � < !1g be an enumeration, in V Q1, of all the branches of T .Let b0� = b� � [�<� b�4



and let s� = min(b0�), � < !1.Let T 0 = [�<!1ft 2 b� : s� < tgThen S =df T � T 0 is a subtree of T without any uncountable branches.PT is the poset of all functions p from a �nite subset of S into !, suchthat p(s) 6= p(t) whenever s < t, ordered by reversed inclusion. PT is ccc(see [Ba], 8.2). If g : S �! ! is a PT-generic function, then the functionh : T �! ! de�ned by: h(t) = g(s�), if t 2 b� and s� < t, satis�es:for every s � t; u, if h(s) = h(t) = h(u), then t and u are comparable.We call such a h a specializing function. Note that if T has a specializingfunction, then T has at most @1-many branches. For if b is a branch, thereis s 2 b such that the set ft 2 b : h(t) = h(s)g is uncountable. But then,b = ft 2 T : t � s or 9u (t � u ^ h(u) = h(s)g. i.e., b is determined by s.Since there are only @1-many such s, there are at most @1-many branches.Now suppose !1 is not inaccessible in L. So, !1 = !L[x]1 , for some x � !.Let P= Q2 � Q3, where Q3 codes h : T �! ! into a y � !, by almost-disjoint coding relative to the reals in L[x]. Thus, P is a four-step iterationof ccc and �-closed posets, hence P is proper.In V P the following is true:9y � !(L[x; y] j= y codes a specializing map h : T �! !)But since T is �1-de�nable over L!1 , in V P the following holds:9y8M(M is a transitive well-founded model of ZF ^ x; y 2M !M j= ``y codes a specializing map h : TM ! !'')This is a �13(x) sentence. By �13-absoluteness, it holds in V . So, in V ,9y � !(L[x; y] j= y codes a specializing map h : T �! !)And this contradicts the fact that T has @2-many branches. 2Remark. The conclusion of the previous Theorem can be stengthened to:either !1 is Mahlo in L or !2 is inaccessible in L. For if !1 is inaccessible butnot Mahlo in L, then we may add, by almost-disjoint coding, an x � ! suchthat !1 = !L[x]1 (see the proof of Theorem 6 below).A re
ecting cardinal in LRecall that a regular cardinal � is re
ecting if for every a 2 H(�) and every�rst-order formula '(x), if for some cardinal �;H(�) j= '(a), then thereexists a cardinal � < � such that H(�) j= '(a). As re
ecting cardinals arestrongly inaccessible, this is seen to be equivalent to: V� ��2 V .If we allow all set-forcing extensions, even those that do not preserve !1,then !1 becomes a re
ecting cardinal in L.The following result is due to Feng-Magidor-Woodin [F-M-W], and inde-pendently to the second author. For completeness, we give a proof.5



Theorem 3 The following are equiconsistent:1. �13-absoluteness for set forcing.2. There exists a re
ecting cardinal.Proof: Assume that V is �13-absolute for set forcing. Let � = !1. We�rst show that � is inaccessible in L and that L� = (V�)L is �2-elementaryin L. For suppose � = (�+)L. Let x0 be a real coding � and let ' be thesentence:9x � !(x codes an ordinal � > � ^ � is an L-cardinal)' is a force-able �13 sentence with x0 as a parameter, so it is true, so � is notthe L-successor cardinal to �. A contradiction.Now suppose  is �2 with a parameter x1 from L�,  true in L. Let � bethe sentence9x � !(x codes L� ^ L� j=  ^ x1 2 L� ^ � is an L-cardinal)� is a force-able �13 sentence with x1 as parameter, so it is true. Thus, thereis a countable � such that L� j=  , x1 2 L�, and � is an L-cardinal. So,L� j=  , since L� ��1 L�.Start now with a regular �, V� ��2 V , and force with the Levy collapseColl(!;< �). Let G be Coll(!;< �)-generic over V .We claim that V [G] is �13-absolute with respect to set forcing.For suppose V [G][H] j= ', where V [G][H] is a set generic extensionof V [G] and ' is a �13 sentence with parameter a real x0 2 V [G]. Forevery � < �, let G(< �) denote G \ Coll(!;< �). Choose � < � so thatx0 2 V [G(< �)]. Then,V j= There exists a forcing Q such that Coll(!;< �) �Q 
 '( _x0)where _x0 is a Coll(!;< �)-term for x0. By �2-elementarity, V� satis�es thesame sentence. As any Q 2 V Coll(!;<�)� can be embedded in Coll(!;< �) forsome �, we get 
Coll(!;<�) '( _x0). So, V [G(< �)] j= '(x0), hence V [G] j= '.2 Remark. The above proof shows that �13-absoluteness for set forcing isconsistent relative to the consistency of ZFC. For, if we choose any cardinal� such that V� ��2 V , � not necessarily regular, we then obtain the desiredabsoluteness when � is Levy-collapsed to !1 (using Coll(!;< �)).A re�nement of the previous argument yields the following:Theorem 4 Suppose that �13-absoluteness holds for !1-preserving set forc-ing. Then !2 is !1-re
ecting in L: For every a 2 H(!1) \ L and every�rst-order formula '(x), if for some L-cardinal �, H(�)L j= '(a), then thereexists an L-cardinal � < !2 such that H(�)L j= '(a).6



Proof. Assume �13-absoluteness for !1-preserving set forcing, and sup-pose that ' is a formula with parameters from H(!1) \ L which holds inH(�)L for some L-cardinal �. We are done if � is less than !2. Otherwise, byLevy-collapsing � to !1 (using Coll(!1; �)), we can produce X � !1 codingH(�)L; thus any ZF� model M containing X satis�es:(�) ' holds in some H(�)L; � an L-cardinal:By choosing � to be a singular cardinal and using the fact that we mayassume that 0# does not exist, we can in addition require that in V [X], !2is a successor L-cardinal. This is enough to guarantee that by an !1-closedalmost-disjoint forcing we can produce Y � !1 coding H(!2), in the sensethat every subset of !1 in V [Y ] belongs to L[Y ]. One more !1-preservingforcing \reshapes" Y , in the sense that it produces Z � !1 such that Y 2L[Z] and Z is \reshaped", meaning that every countable � is in fact countablein L[Z \�]. (Z is produced by forcing with countable z � � < !1, satisfyingthe latter at all � � �.)Now force W � !1 using countable w : � ! 2 with the properties thatw(2
) = Z(
) for 2
 < � and for each � � �, ifM is a ZF� model containingw � � and � = !1 of M then M satis�es (�). This forcing is !1-distributiveusing the fact that all subsets of !1 belong to L[Z] and the fact that (�) holdsin any ZF� model containing Z.Now using the fact that W is reshaped, code it by a real R preserving !1,via almost-disjoint coding. Then R satis�es the �12 formula (with parametersfrom H(!1) \ L):8M(M j= ZF� and R 2M and M j= ``!1 exists''�!M j= ``' holds in H(�)L for some L-cardinal �'')By our absoluteness assumption, we may suppose that R belongs to theground model. Apply this property to the ZF� model M = L!2 [R] and wesee that there is an L-cardinal � < !2 such that H(�)L satis�es ', as desired.2 Remark. The previous result implies that under the hypothesis of �13absoluteness for !1-preserving forcing, either !1 is re
ecting in L or manyL-cardinals greater than !1 must be collapsed. For, if � � !1 is least suchthat H(�)L j= ' for some ' with parameters from H(!1) \ L, then �+ ofL, �++ of L, : : : must all be less than !2. We do not know if the previousresult holds with \!1-preserving" replaced by \preserving stationary subsetsof !1".Class forcingWe next show that �13-absoluteness for class-forcing is false.Theorem 5 Suppose M is a model of ZFC. Then there is a class-genericextension N of M and a �13 sentence ' with real parameters from M suchthat ' is true in N and false in M . 7



Proof: By Jensen's Coding Theorem, M can be extended to a modelof the form L[r], r a real. Then, by the relativisation to r of a result ofBeller-David (see [Da]), the latter model can be extended to L[s], s a real,which is minimal; i.e., this model satis�es the statement:(?) For all ordinals �, L�[s] is not a model of ZF.But notice that this is a �12-property of s and, therefore, if �13-absolutenessfor class-forcing holds, there is a real s in M such that M satis�es (?).In particular, M satis�es s] does not exist. But, under this hypothesis,it is shown in [F] that there is a class forcing extension of M in which some�13 sentence ' with parameter s holds, where ' is false in M . 2�14-absolutenessA Mahlo cardinal in LIn terms of consistency strength, �14-absoluteness is much stronger than �13-absoluteness. Indeed, �13-absoluteness for random forcing, plus �14-absolute-ness for Cohen forcing, already implies that !1 is inaccessible to reals ([B1]).Recall that a poset is �-centered if it can be partitioned into countablymany classes so that for every �nite collection p1; :::; pn of conditions, all inthe same class, there exists p such that p � p1; :::; pn. We have the following:The following result is implicit in the work of Jensen and Solovay [J-S],although in its present form is due to A. Mathias. We thank him for callingit to our attention.Theorem 6 Suppose that �14-absoluteness holds for �-centered forcing and!1 is inaccessible to reals. Then !1 is a Mahlo cardinal in L.Proof: The argument is due to Jensen [J-S], and was his �rst step towardscoding the universe by a real.Suppose that C is a constructible club of countable ordinals, each singularin L. By almost-disjoint coding, a �-centered forcing notion, we may adda real b such that whenever a is a real in the ground model that codes anordinal, b � a is a real coding the next greater element of C. Note that!1 = !L[b]1 : for, working inside L[b], we may de�ne a sequence of codes ofordinals by setting c0 to be some constructible code of !, and given c� weset c�+1 = b� c� . At a limit stage �, writing 
� for the ordinal coded by c�,we take c� to be the �rst code of S�<� 
� in the inner model L[hc� j � < �i],\�rst" meaning �rst in the canonical well-ordering of that model de�nablefrom hc� j � < 
i. That c� exists follows from the fact that each 
� lies inC, and therefore so does 
�, which is therefore singular in L; so in the innermodel L[hc� j � < 
i] it is countable, being singular and the limit of countableordinals. This construction evidently will continue for � = !L[b]1 steps. Butif � < !1, we shall have � 2 C, and so is singular in L, contradicting itsregularity in L[b]. 8



The sentence 9b(!1 = !L[b]1 ) is �14: it says that9b8x ( x codes an ordinal �!9y(y 2 L[b] and y codes the same ordinal as x)):Hence, this sentence is true in the ground model, contrary to hypothesis.2 R. Bosch has shown ([B-B]) that if G is generic over V for the Levycollapse Coll(!;< �), � a Mahlo cardinal, then V [G] is absolute for all pred-icates de�nable from reals and ordinals, under �-centered posets. Therefore,�14-absoluteness for �-centered posets is equiconsistent with the existence ofa Mahlo cardinal.A weakly-compact cardinalBy allowing all ccc posets, !1 becomes a weakly-compact cardinal in L.Theorem 7 The following are equiconsistent:1. �14-absoluteness with respect to ccc forcing extensions.2. There exists a weakly compact cardinal.Proof: 1 ) 2: We already know that !1 must be inaccessible in L. Ifit is not weakly-compact, then in L there is an Aronszajn tree T on !1 suchthat for every model M of ZFC, if M j= \T has a branch of length !V1 ",then M j= \cf(!V1 ) = !" (see [D]). For every sequence hd� : � < !1i ofdistinct reals, there is a ccc poset for coding the sequence along the levels ofT (see [H-S]). i.e., there is a ccc poset such that if G is generic for this posetover V , then in V [G] there is a real c such that hd� : � < !1i 2 L[T; c]. SinceT 2 L, V [G] j= L[c] has uncountably many realsBut the sentence9x 2 !!(L[x] has uncountably many reals)is �14. So, by �14-absoluteness it holds in V , contradicting the inaccessibilityof !1 to reals in V .2 ) 1: This direction follows from a result of Kunen (see [H-S]) whichstates that if � is weakly-compact and G is Coll(!;< �)-generic over V , thenthe L(R) of V [G] is an elementary substructure of the L(R) of any ccc forcingextension of V [G]. 2We �nish with the following result, independently observed by K. Hauser,which corrects a claim from [F-M-W]:Theorem 8 The following are equiconsistent:9



1. �14-absoluteness for set forcing.2. Every set has a sharp and there exists a re
ecting cardinal.Proof: Assume�14 absoluteness for set forcing and suppose that some setx does not have a sharp. Then for some singular cardinal �, x 2 H(�); �+ =(�+)L[x] and hence H(�+) can be coded into L[R] for some real R using aset forcing. (The only need for class forcing is to reshape; however by ourhypothesis on x, any subset of �+ is reshaped in L[x].) So the �14 sentence:For some real R, every real is constructible from Ris true in a set-generic extension and hence true in V . This contradicts�13-absoluteness for Cohen forcing.As every set has a sharp, we have Martin-Solovay absoluteness and there-fore every set-generic extension of V is �13 absolute for set forcing. Nowthe proof that !1 is re
ecting in L assuming �13 absoluteness for set forcing(Theorem 3) shows that !1 is re
ecting in the least inner model closed under#'s, assuming �14-absoluteness for set forcing.Conversely, if V is closed under #'s for sets and � is re
ecting, then as inthe proof that a re
ecting cardinal gives�13 absoluteness for set forcing (The-orem 3), Levy collapsing � to !1 (via Coll(!;< �)) yields �14 absolutenessfor set forcing. 2Remark. The above argument shows that �14-absoluteness for !1-preser-ving set forcings implies that every set has a #. In addition, it shows thatthe following are equiconsistent: (a) �14 absoluteness for set forcing + !1 isinaccessible to reals; (b) Every set has a sharp (see the Remark at the endof Theorem 3).Open questions1. What is the consistency strength of �13 absoluteness for set-forcingnotions that preserve !1? that preserve stationary subsets of !1? thatare proper?2. What is the consistency strength of �14 absoluteness for set forcingsthat preserve stationary subsets of !1? that are proper?3. Is �13 absoluteness for class forcing consistent? By [F], it implies theexistence of 0#.4. What is the consistency strength of �1n absoluteness for set forcingwhen n is greater than 4?It is shown in [H] that �1n-absoluteness for all n is equiconsistent withthe existence of ! strong cardinals.10



References[B 1] J. Bagaria, De�nable forcing and regularity properties of projective setsof reals. Ph. D. Thesis. Berkeley, 1991.[B 2] J. Bagaria, Bounded forcing axioms as principles of generic absolute-ness. To appear in Archiv for Mathematical Logic.[B 3] J. Bagaria, A characterization of Martin's axiom in terms of absolute-ness. The Journal of Symbolic Logic, Volume 62, number 2, June 1997.366-372.[B-B] J. Bagaria and R. Bosch, Solovay models and ccc forcing extensions.Preprint (1998).[Ba] J. Baumgartner, Iterated forcing. Surveys in set theory (A.R.D.Mathias, editor). London Mathematical Society Lecture Note Series, vol.87, Cambridge University Press (1983), 1-59.[B-H-K] J. E. Baumgartner, L. A. Harrington and E. M. Kleinberg, Adding aclosed unbounded set. The Journal of Symbolic Logic, 41 (1976) 481{482.[Da] R. David, Some applications of Jensen's Coding Theorem, Annals ofMathematical Logic, 22 (1982) 177-196.[D] K. Devlin, Constructibility (Springer, Berlin, 1984).[F-M-W] Q. Feng, M. Magidor, and H. Woodin, Universally Baire sets ofreals, in Set Theory of the Continuum, edited by H. Judah, W. Just,and H. Woodin, MSRI, volume 26,(1992) 203{242.[F-M-S]M. Foreman, M. Magidor, and S. Shelah, Martin's Maximum, satu-rated ideals, and non-regular ultra�lters. Part I, Annals of Mathematics,Volume 127,(1988), 1-47.[F] S. Friedman, New �13 Facts. To appear.[G-S] M. Goldstern and S. Shelah, The bounded proper forcing axiom. TheJournal of Symbolic Logic, Volume 60, Number 1. March 1995. 58-73.[H-S] L. Harrington and S. Shelah, Some exact equiconsistency results in settheory. Notre Dame Journal of Formal Logic. Vol. 26 (1985), no. 2.178-188.[H] K. Hauser, The consistency strength of projective absoluteness, Annalsof Pure and Applied Logic, Volume 74, 1995, pp. 245-295.[J] T. Jech, Set theory, Academic Press, 1978.[J-S] R. B. Jensen and R. M. Solovay Some applications of almost disjointsets, Mathematical Logic and Foundations of Set Theory, North Hol-land, (1970) edited by Y. Bar-Hillel. 84{104.[W] W. Hugh Woodin, On the consistency strength of projective uniformiza-tion. in Logic Colloquium '81, North-Holland (1982) 365-383.Joan BagariaDepartament de L�ogica, Hist�oria i Filoso�a de la Ci�enciaUniversitat de BarcelonaBaldiri i Reixach s/n08028 Barcelona (Spain)e-mail: bagaria@trivium.gh.ub.es 11



Sy D. FriedmanDepartment of MathematicsMassachussetts Institute of Technology (MIT)Cambridge, MA 02139 (USA)e-mail: sdf@math.mit.edu

12


