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Abstract

We explore the consistency strength of 33 and X} absoluteness,
for a variety of forcing notions.

Introduction

Shoenfield’s absoluteness theorem states that a X} predicate is true of a real
in a ground model exactly if it is true of the same real in any forcing extension.
However, this is not true for X! predicates. Indeed, if we add a Cohen real
to L, then the sentence “There exists a non-constructible real” is X! and,
while failing in L. it holds in the generic extension. In this paper we shall
mainly investigate the strength of generic absoluteness for ¥ predicates.
The consistency strength of X1 absoluteness under ccc forcing extensions is
just ZFC ([B 3]). But by extending the class of ccc forcing extensions, we
obtain stronger absoluteness properties. Our aim in this paper is to explore
the large cardinal strength of these properties.

Our notation is largely standard. We write (h(s) for the length of a
sequence s. If X is a set, [X]|<¥ is the set of all finite subsets of X. We denote
by K P Kripke—Platek set theory including the axiom of infinity. Transitive
models of K P are called admissible sets.

We call the set-theoretical universe Xl-absolute with respect to some
generic extension if each X! or TI! predicate true of a real in the ground
model is true of the same real in the extension. We call it ¥} -absolute if each
Y1 or I} sentence (without parameters) holding in the ground model holds
in the extension. (These definitions should be contrasted with the “2-step”
absoluteness of [W], where it is required that absoluteness hold not only
between V' and V[G], but between V[G] and V[G][H] for successive generic
extensions V C V|G| C V[G][H].)

We use Solovay’s almost-disjoint coding ([J-S]), which we shall review in
the next section. We shall also use the method of Baumgartner, Harrington,
and Kleinberg ([B-H-K]) to shoot a club through an arbitrary stationary
subset of wy, while preserving w.

Almost disjoint coding

The following account of Solovay’s almost-disjoint coding is due to A. Math-
ias, whom we thank for letting us include it here.

First, let (s; | ¢ € w) be a recursive enumeration of <“2, the set of finite
sequences of 0’s and 1’s, such that each such sequence is enumerated before
any of its proper extensions. For any subset a of w, let @ : w — 2 be



the characteristic function of a. Fix a recursive partition of w into infinitely
many infinite pieces X; (1 € w). For ¢« Cw and ¢ € w, define

o =a i | alth(s;) = s;}
=y sl allh(s;) =s; and lh(s;) € X;}

Thus each f® is a member of a well-known perfect family of pairwise
almost disjoint infinite subsets of w, and is the disjoint union of the infinitely
many infinite sets f.

For subsets a and b of w, set b® a =4 {i € w | bN f* is finite}.

K3

Secondly, let A C P(w) and let 7 : A — P(w). Define the graph of 7 by

G =g {(a,1)|a € A, and i € 7(a)}.

We shall use Solovay’s coding to add a set b C w by a c.c.c. forcing such
that
VYaeA bea=mn(a).

A condition will be a pair (s, g) where s € [w]<¥, and g € [G]<¥, and the
partial ordering is given by

(t,h) < (s,g)iff s Ct, g Ch, and Y(a,i)€g (tN fI Cs).

Any two conditions with the same first part are compatible, so this forcing
is c.c.c. The first part s of a condition describes a finite subset of the set b
to be added; to place (a,7) into the second part is to give a promise that no
further elements of b will be in f#. By standard density arguments, b N f?*

will be finite whenever ¢ € 7m(a), and infinite (since the family of sets f? is
pairwise almost disjoint) whenever 7 ¢ m(a). Thus this forcing achieves what

is promised.

wq 1Inaccessible to reals

Theorem 1 Suppose that w, = wl. Then YNi-absoluteness fails for some
forcing that preserves w;.

Proof: For each countably infinite ordinal « let g, be the <-first func-
tion mapping w onto a. For each n, fix A, such that {a | go(n) = A} is
stationary.

Consider a fixed n. By [B-H-K], we may add, preserving wy, a club subset
C" of that set. By Solovay, we may add a real b such that whenever a € L is
a subset of w that codes a ordinal, b © a codes the first member of C” that
is strictly larger than that ordinal.

Lemma 1 Let M = L,[b] be a countable admissible set such that:
M = every ordinal is constructibly countable.

Thenn e C™.



Proof: Let § < 1, and let ¢ € L, be a subset of w that codes §. Then b ¢
codes a member (¢ of C" greater than 8. b ¢ € M, and so by admissibility,
¢ can be recovered inside M, and so is less that n. As C™ is closed, n € C™.
O

Let ¢(n,b) be the formula:
L,[b] = KP + every ordinal is constructibly countable.

Our construction has added a real b such that
VO, < 0y < O3 < wif(0(01,0) Ap(02,0) Aip(03,0)) = L, [0] = ga, (n) = go,(n)]-

Translated into codes of countable admissible sets, that is a II} assertion
(b, n) about b and the natural number n. So the statement b (b, n) is a
¥ sentence. If Yi-absoluteness holds, then this sentence will be true in the
ground model, witnessed by B say. Consider L, [B]: it is admissible and
believes that every ordinal is constructibly countable. There is, therefore, a
club D™, namely {n < wy | L,[B] <3, L.,[B]}, lying in the ground model,
such that each n € D" satisfies the predicate (5, B).

If for each n we can find such a club D", then the intersection (1, D"
will be a club, D say. But then for 6; < 65, both in D, for every n, gp, (n) =

gs,(n), an absurdity. Thus there is an n for which ¥} absoluteness fails for
the sentence 3b0(b,n). O

The above argument relativises easily to show that for each a C w, ¥i(a)-

[a]

absoluteness for wy-preserving forcing implies that wy; > wf . Hence,

Corollary 1 X}-absoluteness for wi-preserving forcing implies that wy is

. . . Lla
inaccessible to reals, i.e., for every a C w, wy > wl[ I

Proper and semi-proper forcing

We could try to strengthen the previous result by restricting the class of
forcing notions to those that preserve stationary subsets of wy, or even to
semi-proper forcing.

The notion of semi-proper forcing is due to Shelah and generalizes his
own weaker notion of proper forcing, itself a generalization of ccc and o-
closed forcing notions.

Thus, semi-proper posets include all proper posets, plus other well-known
forcing notions, like Prikry forcing.

A forcing notion PP is semi-properif for some large-enough regular cardinal
A (e.g., larger than 22|DD|), there is a club C' C [H(A)]¥ such that for all N € C
and all p € N NP, there is a ¢ < p which is (P, N)-semi-generic, i.e., for all
P-names 7 in N, if IFp “7 € w}”, then ¢ IFp “7 € N”.

Hence, semi-proper forcing preserves wy. In fact it preserves stationary

subsets of wy (see [F-M-S]).



33-absoluteness for semi-proper forcing does not imply that wy is inacces-
sible in L. This follows from results of Goldstern-Shelah [G-S] and Bagaria
[B 2]. Let us call a regular cardinal x reflecting if for every a € H(x) and
every first-order formula ¢(x), if for some cardinal A, H(A) E ¢(a), then
there exists a cardinal < k such that H(d) = ¢(a).

Notice that if  is reflecting, then it must be inaccessible. If & is reflecting,
then k is reflecting in L. The consistency strength of a reflecting cardinal is
below a Mahlo.

Suppose & is reflecting. It follows from [G-S] that there is an wy-preserving
iteration of length x over L of semi-proper forcing notions that forces the
bounded semi-proper forcing axiom. But in [B 2] it is shown that the bounded
semi-proper forcing axiom implies Xi-absoluteness with respect to all semi-
proper forcing extensions.

However, even for the more restricted class of proper forcing notions,
3 1-absoluteness implies that either w; or wy is inaccessible in L.

Recall that a poset P is proper if for some large-enough regular cardinal
A, there is a club €' C [H(A)]” such that for all N € C' and all p € NNP,
there is a ¢ < p which is (P, N)-generic, i.e., for all P-names 7 in N, if
IFp “7 is an ordinal”, then ¢ IFp “7 € N”.

All ccc and all o-closed posets are proper. Also, properness is preserved
by countable-support iteration. In particular, any finite iteration of ccc and
o-closed posets is proper.

The following result follows from work in [Bal]; we thank B. Velickovi¢ for
calling it to our attention.

Theorem 2 Suppose Xi-absoluteness holds for proper forcing. Then, either
wy 18 tnaccessible in L, or wy is.

Proof: If w, is not inaccessible in L, then there is a Kurepa tree T' in L
(i.e., a tree of height w;, with countable levels, and Ry-many branches) which
remains Kurepa in V' (see [J], 24). Further, T" is A;-definable over L, .

Let @ = Qo * Coll(wy,wz), where Qg is the cce forcing for adding w,
Cohen reals, and Coll(wy,ws) is the o-closed poset for collapsing wq to wy
with countable conditions.

Claim: Every branch of T in V@ is already in V.

Proof of Claim: Since Q has property K (i.e., every uncountable sub-
set of Qp contains an uncountable pairwise compatible set) it adds no new
branches to T' (see [Bal, 8.5). Thus, it will be enough to show that every
branch of 7" in V@ is already in V@,

But since VU |= 2% > R, and since Coll(w;,w;) is o-closed, no new
branches to T' are added by Coll(wy,ws) (see [Ba], 8.6). This proves the

Claim.

Let @y = Qq * P, where Pr is the forcing that specializes T'. Namely, let
{b, : @ < w;} be an enumeration, in VO, of all the branches of T'.

Let
b, =bo— | bs

B<a



and let s, = min(b), a < w;.
Let
T = U{teba:5a<t}

a<w]

Then S =4 T — 1" is a subtree of T" without any uncountable branches.

P7 is the poset of all functions p from a finite subset of 5 into w, such
that p(s) # p(t) whenever s < t, ordered by reversed inclusion. Py is ccc
(see [Bal, 8.2). If g : § — w is a Pr-generic function, then the function
h : T — w defined by: h(t) = g(s4), if t € b, and s, < t, satisfies:
for every s < t,u, if h(s) = h(t) = h(u), then ¢ and u are comparable.
We call such a h a spectalizing function. Note that if T' has a specializing
function, then T has at most Ny-many branches. For if b is a branch, there
is s € b such that the set {t € b : h(t) = h(s)} is uncountable. But then,
b={teT:t<sorJdu(t<uAh(u)=h(s)} ie.,bis determined by s.
Since there are only N;-many such s, there are at most N;-many branches.

Now suppose w; is not inaccessible in L. So, w; = wf[x], for some = C w.

Let P = Q, * Q3, where Q3 codes h : T' — w into a y C w, by almost-
disjoint coding relative to the reals in L{z]. Thus, P is a four-step iteration
of ccc and o-closed posets, hence P is proper.

In V¥ the following is true:

dy Cw(L]z,y] F y codes a specializing map h: T — w)
But since T'is A-definable over L, , in V¥ the following holds:
JyVM(M is a transitive well-founded model of ZFAx,y € M —

M = “‘y codes a specializing map h:TM — w??)
This is a X3(z) sentence. By Xi-absoluteness, it holds in V. So, in V,

dy Cw(L]z,y] F y codes a specializing map h: T — w)
And this contradicts the fact that 7" has Ny-many branches. O

Remark. The conclusion of the previous Theorem can be stengthened to:
either w; is Mahlo in L or w, is inaccessible in L. For if w; is inaccessible but
not Mahlo in L, then we may add, by almost-disjoint coding, an = C w such
that wy = wf[x] (see the proof of Theorem 6 below).

A reflecting cardinal in L

Recall that a regular cardinal  is reflecting if for every a € H(x) and every
first-order formula ¢(x), if for some cardinal A\, H(A) = ¢(a), then there
exists a cardinal § < & such that H(d) | ¢(a). As reflecting cardinals are
strongly inaccessible, this is seen to be equivalent to: V; <y, V.

If we allow all set-forcing extensions, even those that do not preserve wy,
then w; becomes a reflecting cardinal in L.

The following result is due to Feng-Magidor-Woodin [F-M-W], and inde-

pendently to the second author. For completeness, we give a proof.
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Theorem 3 The following are equiconsistent:
1. X3-absoluteness for set forcing.

2. There exists a reflecting cardinal.

Proof: Assume that V is X3-absolute for set forcing. Let x = w;. We
first show that x is inaccessible in L and that L, = (VH)L is Yq-elementary
in L. For suppose k = (AT)L. Let x5 be a real coding A and let ¢ be the
sentence:

Jv C w(x codes an ordinal o > A A« is an L-cardinal)

@ is a force-able Y1 sentence with xy as a parameter, so it is true, so  is not
the L-successor cardinal to k. A contradiction.

Now suppose ¥ is Yo with a parameter x; from L, @ true in L. Let 8 be
the sentence

Je Cw(x codes Lo ALy, =t ANy € Ly AN is an L-cardinal)

0 is a force-able ¥} sentence with x; as parameter, so it is true. Thus, there
is a countable « such that L, = ¢, @1 € L,, and « is an L-cardinal. So,
L. E ¢, since L, <5, L.

Start now with a regular &, V; <5, V, and force with the Levy collapse
Coll(w,< k). Let GG be Coll(w, < k)-generic over V.

We claim that V[G] is X3-absolute with respect to set forcing.

For suppose V[G|[H] = ¢, where V[G][H] is a set generic extension
of V[G] and ¢ is a 33 sentence with parameter a real zo € V[G]. For
every o < k, let G(< «) denote G N Coll(w, < «). Choose o < & so that
zo € V[G(< a)]. Then,

V |= There exists a forcing Q such that Coll(w,< a)* Q IF ¢(2y)

where @ is a Coll(w, < a)-term for x9. By Ys-elementarity, V,; satisfies the
same sentence. As any Q € VM) can be embedded in Coll(w,< [3) for

some 3, we get |Feo(w,<p) ©(Zg). So, V[G(< B)] E ¢(x0), hence V[G] E .
O

Remark. The above proof shows that Y.l-absoluteness for set forcing is
consistent relative to the consistency of ZFC. For, if we choose any cardinal
k such that V, <5, V, k not necessarily regular, we then obtain the desired
absoluteness when & is Levy-collapsed to w; (using Coll(w, < k)).

A refinement of the previous argument yields the following:
Theorem 4 Suppose that X3-absoluteness holds for wi-preserving set forc-
ing. Then wy is wi-reflecting in L: For every a € H(wy) N L and every

first-order formula p(x), if for some L-cardinal A\, H(\)' = ¢(a), then there
exists an L-cardinal § < wy such that H(8) |= p(a).
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Proof. Assume Xi-absoluteness for w;-preserving set forcing, and sup-
pose that ¢ is a formula with parameters from H(w;) N L which holds in
H (M) for some L-cardinal A. We are done if ) is less than w,. Otherwise, by
Levy-collapsing A to wy (using Coll(wy, A)), we can produce X C w; coding
H(M); thus any ZF~ model M containing X satisfies:

* holds in some H(M)*, X an L-cardinal.
¥

By choosing A to be a singular cardinal and using the fact that we may
assume that 0% does not exist, we can in addition require that in V[X], w,
is a successor L-cardinal. This is enough to guarantee that by an w;-closed
almost-disjoint forcing we can produce Y C wy coding H(wsy), in the sense
that every subset of wy in V[Y] belongs to L[Y]. One more w;i-preserving
forcing “reshapes” Y, in the sense that it produces Z C w; such that YV €
L[Z] and Z is “reshaped”, meaning that every countable « is in fact countable
in L[ZNa]. (Z is produced by forcing with countable z C 3 < wy, satisfying
the latter at all o < [3.)

Now force W C wy using countable w : a — 2 with the properties that
w(2y) = Z(y) for 2y < avand for each 8 < a, if M is a ZF~ model containing
w [ B and § =w; of M then M satisfies (x). This forcing is wq-distributive
using the fact that all subsets of wy belong to L[Z] and the fact that () holds
in any ZF~ model containing Z.

Now using the fact that W is reshaped, code it by a real R preserving wy,
via almost-disjoint coding. Then R satisfies the II3 formula (with parameters

from H(wy)N L):
VM(M|=ZF~ and R€ M and M | ‘‘w; exists’’ —

M E ‘¢ holds in H(M)! for some L-cardinal \’’)

By our absoluteness assumption, we may suppose that R belongs to the
ground model. Apply this property to the ZF~ model M = L,,[R] and we

see that there is an L-cardinal § < w, such that H(§)" satisfies ¢, as desired.
O

Remark. The previous result implies that under the hypothesis of X3
absoluteness for w;-preserving forcing, either wy is reflecting in L or many
L-cardinals greater than w; must be collapsed. For, if A > w; is least such
that H(M\)Y = ¢ for some ¢ with parameters from H(w;) N L, then A\t of
L, ATt of L, ... must all be less than w,. We do not know if the previous
result holds with “w;-preserving” replaced by “preserving stationary subsets
of w;”.

Class forcing

We next show that X3-absoluteness for class-forcing is false.

Theorem 5 Suppose M is a model of ZFC. Then there is a class-generic
extension N of M and a X} sentence ¢ with real parameters from M such
that ¢ ts true in N and false in M.



Proof: By Jensen’s Coding Theorem, M can be extended to a model
of the form L[r], r a real. Then, by the relativisation to r of a result of

Beller-David (see [Da]), the latter model can be extended to L[s], s a real,
which is minimal; i.e., this model satisfies the statement:

(x) For all ordinals «, L,[s] is not a model of ZF.

But notice that this is a II}-property of s and, therefore, if X3i-absoluteness
for class-forcing holds, there is a real s in M such that M satisfies (%).

In particular, M satisfies s* does not exist. But, under this hypothesis,
it is shown in [F] that there is a class forcing extension of M in which some
33 sentence ¢ with parameter s holds, where ¢ is false in M. O

Yi-absoluteness

A Mahlo cardinal in L

In terms of consistency strength, 3}-absoluteness is much stronger than X3-
absoluteness. Indeed, X3-absoluteness for random forcing, plus ¥}-absolute-
ness for Cohen forcing, already implies that w; is inaccessible to reals ([B
1]).

Recall that a poset is o-centered if it can be partitioned into countably
many classes so that for every finite collection py, ..., p, of conditions, all in
the same class, there exists p such that p < py, ..., p,. We have the following:

The following result is implicit in the work of Jensen and Solovay [J-S],
although in its present form is due to A. Mathias. We thank him for calling
it to our attention.

Theorem 6 Suppose that ¥}-absoluteness holds for o-centered forcing and
wy 18 tnaccessible to reals. Then wy s a Mahlo cardinal in L.

Proof: The argument is due to Jensen [J-S], and was his first step towards
coding the universe by a real.

Suppose that (' is a constructible club of countable ordinals, each singular
in L. By almost-disjoint coding, a o-centered forcing notion, we may add
a real b such that whenever a is a real in the ground model that codes an
ordinal, b ® a is a real coding the next greater element of C'. Note that
wp = wf[b]: for, working inside L[b], we may define a sequence of codes of
ordinals by setting ¢y to be some constructible code of w, and given ¢, we
set ¢,41 = b ¢,. At a limit stage A, writing ~, for the ordinal coded by ¢,,
we take ¢y to be the first code of | J, ., 7, in the inner model L[(c, | v < A)],
“first” meaning first in the canonical well-ordering of that model definable
from (¢, | v < ). That ¢, exists follows from the fact that each ~, lies in
C', and therefore so does 7,, which is therefore singular in L; so in the inner
model L[{c, | ¥ < #)] it is countable, being singular and the limit of countable
ordinals. This construction evidently will continue for § = wf[b] steps. But
if § < wy, we shall have § € (', and so is singular in L, contradicting its
regularity in L[b].



The sentence 3b(w; = wf[b]) is ¥1: it says that
JbVx ( © codes an ordinal —»

Jdy(y € L[b] and y codes the same ordinal as x)).

Hence, this sentence is true in the ground model, contrary to hypothesis.
O

R. Bosch has shown ([B-B]) that if (¢ is generic over V for the Levy
collapse Coll(w, < k), K a Mahlo cardinal, then V[(] is absolute for all pred-
icates definable from reals and ordinals, under o-centered posets. Therefore,
32 -absoluteness for o-centered posets is equiconsistent with the existence of

a Mahlo cardinal.

A weakly-compact cardinal

By allowing all ccc posets, w; becomes a weakly-compact cardinal in L.

Theorem 7 The following are equiconsistent:
1. X3-absoluteness with respect to ccc forcing extensions.

2. There exists a weakly compact cardinal.

Proof: 1 = 2: We already know that w; must be inaccessible in L. If
it is not weakly-compact, then in L there is an Aronszajn tree T' on w; such
that for every model M of ZFC, if M |= “T has a branch of length w!”,
then M = “cf(w)) = w” (see [D]). For every sequence (d, : a < w;) of
distinct reals, there is a ccc poset for coding the sequence along the levels of
T (see [H-S]). i.e., there is a ccc poset such that if (¢ is generic for this poset
over V, then in V[(] there is a real ¢ such that (d, : @ < wy) € L[T,¢]. Since
TeL,

V]G] E L[c¢] has uncountably many reals

But the sentence
Jdx € w¥(L[x] has uncountably many reals)

is X1, So, by Yi-absoluteness it holds in V, contradicting the inaccessibility
of w; to reals in V.

2 = 1: This direction follows from a result of Kunen (see [H-S]) which
states that if k is weakly-compact and G is Coll(w, < r)-generic over V', then
the L(R) of V[(] is an elementary substructure of the L(R) of any ccc forcing
extension of V[G]. O

We finish with the following result, independently observed by K. Hauser,
which corrects a claim from [F-M-W]:

Theorem 8 The following are equiconsistent:



1. X}-absoluteness for set forcing.

2. Fvery set has a sharp and there exists a reflecting cardinal.

Proof: Assume X} absoluteness for set forcing and suppose that some set
x does not have a sharp. Then for some singular cardinal x, v € H(k), kT =
(«T)7] and hence H(x%) can be coded into L[R] for some real R using a
set forcing. (The only need for class forcing is to reshape; however by our
hypothesis on z, any subset of x* is reshaped in L[z].) So the X} sentence:

For some real [i, every real is constructible from R

is true in a set-generic extension and hence true in V. This contradicts
33-absoluteness for Cohen forcing.

As every set has a sharp, we have Martin-Solovay absoluteness and there-
fore every set-generic extension of V is 3} absolute for set forcing. Now
the proof that w; is reflecting in L assuming X3 absoluteness for set forcing
(Theorem 3) shows that wy is reflecting in the least inner model closed under
#’s, assuming X1-absoluteness for set forcing.

Conversely, if V' is closed under #’s for sets and « is reflecting, then as in
the proof that a reflecting cardinal gives 33 absoluteness for set forcing (The-
orem 3), Levy collapsing & to w; (via Coll(w, < k)) yields X} absoluteness
for set forcing. O

Remark. The above argument shows that X}-absoluteness for w;-preser-
ving set forcings implies that every set has a #. In addition, it shows that
the following are equiconsistent: (a) X} absoluteness for set forcing + wy is

inaccessible to reals; (b) Every set has a sharp (see the Remark at the end
of Theorem 3).

Open questions

1. What is the consistency strength of 3} absoluteness for set-forcing
notions that preserve w7 that preserve stationary subsets of w7 that
are proper?

2. What is the consistency strength of X} absoluteness for set forcings
that preserve stationary subsets of w;? that are proper?

3. Is X3 absoluteness for class forcing consistent? By [F], it implies the
existence of 0%,

4. What is the consistency strength of X1 absoluteness for set forcing
when n is greater than 47

It is shown in [H] that 3l-absoluteness for all n is equiconsistent with
the existence of w strong cardinals.
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