
Absoluteness Course, Wintersemester 2004Le
tures 1 and 2Introdu
tionThis 
ourse will treat generalisations of the following 
lassi
al result. Foran in�nite 
ardinal κ, H(κ) denotes the set of sets whose transitive 
losurehas 
ardinality less than κ.Theorem 1. (Lévy Absoluteness) Suppose that ϕ is a Σ1 formula with para-meters from H(ω1). If ϕ is true in some extension of V satisfying ZFC (forexample, in a set-generi
 extension of V ) then ϕ is true in V .An elementary fa
t is that for any un
ountable 
ardinal κ, H(κ) is a
Σ1-elementary submodel of V . Therefore:Corollary 2. Suppose that W is an extension of V satisfying ZFC. Then
H(ω1)

V is a Σ1-elementary submodel of H(ω1)
W .What follows is an outline of the generalisations of Corollary 2 that wewill 
onsider in this 
ourse. Many 
on
epts will be mentioned in this outlinethat will only later be de�ned, when we prove the mentioned results.De�nition. Suppose that P is a de�nable 
lass of posets. A P-generi
 ex-tension is a set-generi
 extension of V obtained by for
ing with a poset in

P. Then Σn(H(κ))-absoluteness for P-for
ing means that H(κ)V is a Σn-elementary submodel of H(κ)W whenever W is a P-generi
 extension of V .We abbreviate this as Abs(Σn(H(κ)),P).Thus Corollary 2 implies Abs(Σ1(H(ω1)), set-for
ing), i.e., Abs(Σ1(H(ω1)),P)where P = the 
lass of all posets.It follows that Σ2(H(ω1)) formulas are persistent for set-generi
 exten-sions of V , in the sense that if su
h a formula holds in some set-generi
extension then it holds in all larger set-generi
 extensions. Therefore it isreasonable to 
onsider Abs(Σ2(H(ω1)),P) for various for
ing notions P.Theorem 3. The following are equi
onsistent:1. Abs(Σ2(H(ω1)), set-for
ing). 1



2. Abs(Σ2(H(ω1)), ω1-preserving set-for
ing).3. Abs(Σ2(H(ω1)), stationary-preserving (at ω1) set-for
ing).4. Abs(Σ2(H(ω1)), proper set-for
ing) and ω1 is ina

essible to reals.5. There is a re�e
ting 
ardinal, i.e., a regular 
ardinal κ su
h that H(κ) is
Σ2-elementary in V .Theorem 4. Abs(Σ2(H(ω1)), semiproper set-for
ing) is 
onsistent relative toZFC.Theorem 5. The following are equi
onsistent:1. Abs(Σ2(H(ω1)), 


 set-for
ing) and ω1 is ina

essible to reals.2. There is a S
hrittesser 
ardinal.It is reasonable to 
onsider Abs(Σ3(H(ω1)),P) provided one imposes thehypothesis that Σ3(H(ω1)) formulas persist for P-generi
 extensions. Thelatter is equivalent to saying that Abs(Σ2(H(ω1)),P) holds in all P-generi
extensions, a form of �two-step absoluteness� for P-for
ing. We 
onsider nextsome examples of this.Theorem 6. The following are equivalent:1. All set-generi
 extensions obey Σ2(H(ω1))-absoluteness for further set-generi
 extensions.2. All stationary-preserving at ω1 set-generi
 extensions obey Σ2(H(ω1))-absoluteness for further stationary-preserving at ω1 set-generi
 extensions.3. Every set has a #.Theorem 7? The following are equivalent:1. All proper set-generi
 extensions obey Σ2(H(ω1))-absoluteness for furtherproper set-generi
 extensions.2. Every set belongs to an inner model with a remarkable 
ardinal.Theorem 8? The following are equivalent:1. All 


 set-generi
 extensions obey Σ2(H(ω1))-absoluteness for further 


set-generi
 extensions.2. ω1 is weakly 
ompa
t relative to reals.There should be a version of Theorems 6-8 for semiproper for
ing.In light of Theorem 6, the 
orre
t 
ontext for Σ3(H(ω1))-absoluteness forset-generi
 extensions is ZFC + Every set has a #.2



Theorem 9. The following are equi
onsistent:1. Σ3(H(ω1))-absoluteness for set-generi
 extensions and every set has a #.2. There exists a re�e
ting 
ardinal and every set has a #.There should be results analogous to Theorem 9 for semiproper, properand 


.
Σ4(H(ω1))-absoluteness for set-generi
 extensions is reasonable provided

Σ4(H(ω1)) formulas persist for set-generi
 extensions, i.e., provided that allset-generi
 extensions obey Σ3(H(ω1))-absoluteness for further set-generi
extensions.Theorem 10? The following are equivalent:1. All set-generi
 extensions obey Σ3(H(ω1))-absoluteness for further set-generi
 extensions.2. Every set belong to an inner model with a strong 
ardinal.Theorem 11. The following are equi
onsistent:1. Σ4(H(ω1))-absoluteness and every set belongs to an inner model with astrong 
ardinal.2. There exists a re�e
ting 
ardinal and every set belongs to an inner modelwith a strong 
ardinal.To 
ontinue, one adds strong 
ardinals.There should be appropriate versions of Theorems 10, 11 for semiproper,proper and 


.We next 
onsider absoluteness for H(ω2). This is parti
ularly interestingdue to its 
onne
tions to the �bounded for
ing axioms�.Theorem 12. Abs(Σ1(H(ω2)), ω1-preserving set-for
ing) is false.Theorem 13. Abs(Σ1(H(ω2)), 


 set-for
ing) is equivalent to Martin's Axiomat ω1.Theorem 14. The following are equi
onsistent:1. Abs(Σ1(H(ω2)), proper set-for
ing).2. Abs(Σ1(H(ω2)), semiproper set-for
ing).3. There is a re�e
ting 
ardinal 3



Theorem 15. Abs(Σ1(H(ω2)), stationary-preserving at ω1 set-for
ing) impliesthat every set belongs to an inner model with a strong 
ardinal. The 
onsi-sten
y of Abs(Σ1(H(ω2)), stationary-preserving at ω1 set-for
ing) follows fromthat of a proper 
lass of Woodin 
ardinals.Theorem 16. Σ1(H(ω2))-absoluteness 
annot hold in all 


 set-for
ing ex-tensions.So it is not reasonable to look at Σ2(H(ω2))-absoluteness.Theorem 17. Σ1(H(ω3))-absoluteness for 


 set-for
ing extensions is equi-valent to Martin's Axiom at ω2. But for proper set-for
ing extensions it isfalse. Also, for set-for
ing extensions whi
h are stationary-preserving at both
ω1 and ω2 it is false?An appropriate form of Σ1(H(ω3))-absoluteness for more than 


 for
ingis not known.Absoluteness prin
iples on H(ω1) have no e�e
t on the size of the 
onti-nuum. However those on H(ω2) do:Theorem 18. Σ1(H(ω2))-absoluteness for proper set-for
ing implies 2ℵ0 = ℵ2.Strong AbsolutenessNoti
e that Lévy absoluteness applies to arbitrary extensions, not justset-generi
 ones. Are there strengthenings of Lévy absoluteness whi
h alsoapply to arbitrary extensions?Theorem 19.Σ2(H(ω1))-absoluteness (and hen
e alsoΣ1(H(ω2))-absoluteness)for (stationary-preserving at ω1) 
lass-for
ing extensions is false.A 
onsistent possibility is to require absolute parameters. A 
lass A isabsolute between V and an extension W i� some formula without parametersde�nes A both in V and in W .Conje
ture. The following axiom is 
onsistent relative to large 
ardinals:Strong Absoluteness. Absoluteness holds for arbitrary extensions of V for
Σ1 formulas with absolute 
lass parameters: If a Σ1 formula ϕ with 
lass4



parameter A holds in an extension W of V and A is absolute between V and
W then ϕ holds in V .Theorem 20? (∗) implies the existen
e of an inner model with a Woodin
ardinal. Le
tures 3 and 4De�nitions and ProofsWe now begin the formal part of the 
ourse. Our �rst task is to prove:Theorem 1. (Lévy Absoluteness) Suppose that ϕ is a Σ1 formula with para-meters fromH(ω1). Suppose thatW is an outer model of V (i.e., an extensionof V satisfying ZFC with same ordinals as V ; for example, a set-generi
 ex-tension of V ). Then if ϕ is true in W it is also true in V .Proof. The idea is to asso
iate to ea
h Σ1 formula ϕ with parameter x ∈
H(ω1) a tree Tϕ of size ωW

1 su
h that in both V and W , ϕ is true i� Tϕ hasan in�nite bran
h (i.e., i� Tϕ is not well-founded). This redu
es Lévy absolu-teness to the absoluteness of well-foundedness of trees, a simple 
onsequen
eof the ZFC axioms.To obtain the tree Tϕ we pro
eed as follows. For simpli
ity, assume that
x does not exist, i.e., that ϕ has no parameter. (The proof we give will�relativise� to the parameter x, so this is not a serious restri
tion.) As ϕ is
Σ1 it is equivalent toThere exists a transitive set t su
h that t � ϕ.In fa
t, ϕ is equivalent toThere exists a 
ountable transitive set t su
h that t � ϕ,sin
e if u is an arbitrary transitive set satisfying ϕ, we 
an repla
e u by thetransitive 
ollapse of a 
ountable elementary submodel of u, whi
h will thenbe a 
ountable transitive model of ϕ.Now for ea
h 
ountable transitive set t, the stru
ture (t,∈) is isomorphi
 toa stru
ture (ω,E) where E is a binary relation on ω. Conversely, by the Mo-stowski Collapse Theorem, if (ω,E) satis�es the Axiom of Extensionality and5



is well-founded, then it is isomorphi
 to (t,∈) for some 
ountable transitive
t. Therefore ϕ is equivalent toThere exists an (ω,E) satisfying both ϕ and the Axiom of Extensionsalitywhi
h is well-founded.Let ψ be the 
onjun
tion of ϕ with the Axiom of Extensionality. Write ψ inprenex normal form, for example, as ∀x1∃x2∀x3∃x4γ(x1, . . . , x4), where γ isquanti�er-free. Then (ω,E) satis�es ψ i� there exist Skolem fun
tions f1 :
ω → ω, f1,3 : ω×ω → ω su
h that (ω,E) � ∀x1∀x3γ(x1, f1(x1), x3, f1,3(x1, x3)),the latter being a universal formula.We now des
ribe a tree T ′ with the property that T ′ has an in�nitebran
h i� some (ω,E), possibly ill-founded, satis�es both ϕ and the Axi-om of Extensionality. A node (element) of T ′ on level n is a �nite stru
ture
(s, e) where e is a binary relation on s and s is a �nite set of natural num-bers 
ontaining n = {0, 1, . . . , n − 1}, together with fun
tions f s

1 : n → s,
f s

1,3 : n × n → s su
h that s = Ran f s
1 ∪ Ran f s

1,3 and for all x1, x3 < n,
(s, e) � γ(x1, f

s
1 (x1), x3, f

s
1,3(x1, x3)). When extending a node, one in
reases

n, enlarges the stru
ture (s, e) and extends the fun
tions f s
1 , f

s
1,3. Then anin�nite bran
h through this tree produ
es a model (ω,E) of ψ, i.e., of ϕ to-gether with the Axiom of Extensionality. Conversely, if ψ has a model thenthis tree will have an in�nite bran
h.We need to modify T ′ to a tree T whose in�nite bran
hes 
orrespond towell-founded models (ω,E) of ψ. A node of T 
onsists of (s, e) and f s

1 , f
s
1,3as above, together with a fun
tion r : s → ωW

1 with the property thatif the pair (m,n) belongs to e, then r(m) < r(n). Then an in�nite bran
hthrough T gives rise to a model (ω,E) of ψ together with a �ranking fun
tion�
R : ω → ω1 with the property that (m,n) ∈ E implies R(m) < R(n); itfollows that the model (ω,E) must be well-founded. Conversely, if ψ hasa 
ountable well-founded model in W then the tree T will have an in�nitebran
h, sin
e we 
an 
hoose a ranking fun
tion for that model with valuesless than ωW

1 .So the truth of ϕ is equivalent to the existen
e of an in�nite bran
hthrough T , and this equivalen
e holds not only in V , but also in W . If Thas an in�nite bran
h in V then of 
ourse it also has an in�nite bran
h in
W , sin
e W 
ontains V . Conversely, suppose that T has no in�nite bran
h6



in V . Then sin
e V satis�es ZFC, in V there is a �ranking fun
tion� G on T ,i.e., a fun
tion G from the nodes of T into Ord su
h that if a is a node of Textending the node b of T , then G(a) < G(b). As the fun
tion G also belongsto W , it follows that T has no in�nite bran
h in W . Therefore we have:
ϕ is true in V i�
T has an in�nite bran
h in V i�
T has an in�nite bran
h in W i�
ϕ is true in W ,as desired. 2Corollary 2. Suppose that W is an extension of V satsifying ZFC. Then
H(ω1)

V is a Σ1-elementary submodel of H(ω1)
W .Proof. Suppose that a Σ1 formula with parameters from H(ω1)

V is true in
H(ω1)

W . Then it is also true in W and therefore by Lévy absoluteness, in
V . Therefore we need only show that H(ω1)

V is Σ1-elementary in V . But ifa Σ1 formula with parameters from H(ω1)
V is true in V , it is also true in a
ountable Σ1-elementary submodel M of V , in the transitive 
ollapse T of

M and therefore also in H(ω1)
V , sin
e T is a transitive submodel of H(ω1)

V .
2 It follows that Σ2(H(ω1)) formulas are persistent, in the sense that if
V ⊆ W are models of ZFC with the same ordinals then any Σ2(H(ω1))formula true in V is also true in W . For this reason, it is natural to 
onsiderAbs(Σ2(H(ω1),P), for various set-for
ing notions P, our next topi
.We �rst proveTheorem 3.1. The following are equi
onsistent:1. Abs(Σ2(H(ω1)), set-for
ing).2. There exists a re�e
ting 
ardinal, i.e., a regular 
ardinal κ su
h that H(κ)is Σ2-elementary in V .Proof. First suppose that κ is Σ2-re�e
ting, and we show that V [G] satis�esAbs(Σ2(H(ω1)), set-for
ing), where G is generi
 over V for Coll(ω,< κ), thefor
ing that with �nite 
onditions 
ollapses every ordinal less than κ to ω.A 
ondition in Coll(ω,< κ) is a fun
tion p with domain a �nite subset of7



ω × κ su
h that p(n, α) < α for ea
h (n, α) ∈ Dom(p). For any κ̄ < κlet Coll(ω,< κ̄) denote the set of 
onditions in Coll(ω,< κ) with domain
ontained in ω × κ̄.Lemma 3.1.1. (a) Suppose that κ̄ is a limit ordinal less than κ and X̄ isa maximal anti
hain in Coll(ω,< κ̄). Then X̄ is a maximal anti
hain inColl(ω,< κ).(b) Coll(ω,< κ) has the κ-

, i.e., anti
hains in this for
ing have size lessthan κ.(
) If G is Coll(ω,< κ)-generi
 then G ∩ Coll(ω,< κ̄) is Coll(ω,< κ̄)-generi
for ea
h limit ordinal κ̄ < κ.(d) If x is a real in V [G], where G is Coll(ω,< κ)-generi
 over V , then xbelongs to V [G ∩ Coll(ω,< κ̄)] for some limit κ̄ < κ.Proof. (a) It su�
es to show that every 
ondition in Coll(ω,< κ) is 
ompa-tible with some element of X̄. Given a 
ondition p, let p̄ be p restri
ted toDom(p)∩(ω× κ̄). Then p̄ belongs to Coll(ω,< κ̄) and therefore is 
ompatiblewith some q̄ in X̄. But then p is also 
ompatible with q̄, sin
e q̄ and p − p̄have disjoint domains.(b) This follows from (a), sin
e if X is a maximal anti
hain in Coll(ω,< κ),a 
losure argument shows that X̄ = X ∩Coll(ω,< κ̄) is a maximal anti
hainin Coll(ω,< κ̄) for some limit κ̄ < κ.(
) This also follows from (a).(d) Let x = σG (i.e., σ is a name for x in V [G]). For ea
h n, the set of 
onditi-ons in Coll(ω,< κ) whi
h de
ide the senten
e �n ∈ σ� is dense. Note that anymaximal anti
hain in a dense subordering of P is also a maximal anti
hainin P . For ea
h n let Xn be a maximal anti
hain of 
onditions whi
h de
ide�n ∈ σ�. Then ea
h Xn is a maximal anti
hain in P and x is determined byhow G interse
ts the Xn's. By (b), there is a limit κ̄ < κ su
h that ea
h Xnis 
ontained in Coll(ω,< κ̄), and therefore x belongs to V [G ∩Coll(ω,< κ̄)].
2 (Lemma 3.1.1)Now suppose that ϕ is a Σ2(H(ω1)) formula with parameter p ∈ H(ω1)

V [G]whi
h is true in some set-generi
 extension of V [G]. Note that any Σ2(H(ω1))formula is also a Σ2 formula, as the relation �x ∈ H(ω1)� is Σ1. First assumethat p belongs to V ; sin
e the transitive 
losure of p is 
ountable in V [G],
p in fa
t belongs to H(κ)V . Then V satis�es the following senten
e withparameter p: 8



There exists a set-for
ing P su
h that P 
 ϕ.As ϕ is Σ2, the relation �P 
 ϕ� is also Σ2. As κ is re�e
ting, the abovesenten
e is true in H(κ). Let P be a set-for
ing in H(κ) whi
h for
es ϕ.Then sin
e κ is strongly ina

essible, the power set of P has size less than κin V and therefore is 
ountable in V [G]. It follows that in V [G] there existsa P -generi
 g over V , and sin
e P for
es ϕ, we get V [g] � ϕ. Sin
e ϕ is
Σ2(H(ω1)), by persisten
e it is also true in V [G], as desired.If p is not 0, then we argue as follows. As p belongs to H(ω1)

V [G], it
an be 
oded by a real in V [G]. By Lemma 3.1.1 (d), p belongs to V [G ∩Coll(ω,< κ̄)] for some limit κ̄ < κ. Now the for
ing Coll(ω,< κ) fa
tors asColl(< κ̄) × Coll(≥ κ̄), and therefore V [G] = V [G(< κ̄)][G(≥ κ̄)], where
G(≥ κ̄) is P (≥ κ̄)-generi
 over V [G(< κ̄). Now repeat the above argumentusing the ground model V [G(< κ̄), whi
h 
ontains the parameter p, and its
P (≥ κ̄)-generi
 extension V [G(< κ̄)][G(≥ κ̄)] = V [G].Le
tures 5 and 6We 
omplete the proof ofTheorem 3.1. The following are equi
onsistent:1. Abs(Σ2(H(ω1)), set-for
ing).2. There exists a re�e
ting 
ardinal, i.e., a regular 
ardinal κ su
h that H(κ)is Σ2-elementary in V .Proof. It remains to show that the 
onsisten
y of 1 implies that of 2. Weshow that if Abs(Σ2(H(ω1)), set-for
ing) holds, then κ = ωV

1 is a re�e
ting
ardinal in L. Suppose that L � ϕ, where ϕ is a Σ2 formula with parametersfrom H(κ)L = Lκ. We must show that ϕ is true in Lκ. Sin
e ϕ is true in L,by re�e
tion it is also true in H(θ)L = Lθ for some L-
ardinal θ. There isa set-generi
 extension of V in whi
h θ is 
ountable. Therefore in some set-generi
 extension of V the following Σ2(H(ω1)) formula (with parametersfrom Lκ ⊆ H(ω1)
V ) is true:

H(ω1) � There exists an ordinal θ su
h that θ is a 
ardinal of L and Lθ � ϕ.By Abs(Σ2(H(ω1)), set-for
ing), the above formula is also true in V . Therefo-re there is an ordinal θ less than ωV
1 = κ su
h that Lθ � ϕ and H(ω1)

V � θ is9



an L-
ardinal. Sin
e H(ω1)
V is Σ1-elementary in V , θ really is an L-
ardinal,and therefore Lθ is Σ1-elementary in Lκ. As ϕ is Σ2, it follows that Lκ alsosatis�es ϕ, as desired. 2Iterated Set-For
ing and PropernessWe now 
onsider Abs(Σ2(H(ω1)),P) for various types of set-for
ing P.Some natural 
hoi
es for P are the following


 ⊆ Proper ⊆ Stationary-preserving at ω1 ⊆ ω1-preserving ⊆ Set-for
ingA for
ing P is stationary-preserving at ω1 i� whenever X ⊆ ω1 is stationary,it remains stationary in ea
h P -generi
 extension. The de�nition of properis more 
omplex, and is 
losely related to the method of for
ing iteration,whi
h we des
ribe next.First we 
onsider �nite-support iteration.De�nition. Let α be a nonzero ordinal. Pα is an iteration of length α with�nite support i� it is a set of α-sequen
es with the following properties:(i) If α = 1 then for some for
ing notionQ0 = Q̇0, P1 is the set of all sequen
es

〈p(0)〉 of length 1, where p(0) ∈ Q0. And 〈p(0)〉 ≤ 〈q(0)〉 i� p(0) ≤ q(0),
1P1 = 〈1Q0〉.(ii) If α = β + 1 then Pβ = {p ↾ β | p ∈ Pα} is an iteration of length β andthere is some Pβ-name Q̇β su
h that 1Pβ 
 Q̇β is a for
ing notion and:
p ∈ Pα i� p ↾ β ∈ Pβ, p(β) is a Pβ-name of rank less than Rank Q̇β and
1Pβ 
 p(β) ∈ Q̇β .
p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ and p ↾ β 
 p(β) ≤ q(β), and 1Pα isde�ned by 1Pα(γ) = 1Q̇γ for all γ ≤ β.(iii) If α is a limit ordinal then for all β < α, Pβ = {p ↾ β | p ∈ Pα} is aniteration of length β and:
p ∈ Pα i�
p ↾ β ∈ Pβ for all β < α and 1Pβ 
 p(β) = 1Q̇β for all but �nitely many
β < α.Also: p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ for all β < α and 1Pα is de�ned by
1Pα(β) = 1Q̇β for all β < α.Notation. ≤β denotes the ordering of Pβ, 
β denotes the for
ing relation of
Pβ and 
β ϕ abbreviates 1Pβ 
β ϕ. 10



Theorem 3.2.1. Let Pα result from the iteration with �nite support of 〈Q̇β |
β < α〉. If 
β Q̇β is 


 for ea
h β < α then Pα is 


.A ni
e appli
ation of �nite support iteration is to Suslin's Problem. Suslinasked whether there is a 
omplete, dense linear ordering without endpoints,without an un
ountable set of pairwise disjoint intervals and not isomorphi
to the real line. It turned out the answer is Yes in L, but the answer is Noin an extension of L obtainable through iteration with �nite support.An equivalent version of Suslin's question is the following: Is there a SuslinTree? The latter is an un
ountable partially-ordered set (T,<T ) su
h thatthe prede
essors of ea
h element of T are well-ordered by <T and (T,<T )has no un
ountable 
hain or anti
hain.Noti
e that if (T,<T ) is a Suslin tree then (T,≥T ) is a partial-orderingand therefore 
an be used as a for
ing notion. If T is a Suslin tree with theproperty that ea
h t ∈ T has un
ountably many extensions in T , then for
ingwith T adds an ℵ1-bran
h through T and therefore T will not be Suslin inthe generi
 extension.Theorem 3.2.2. In L, there is an iteration with �nite support P of length ℵ2su
h that if G is P -generi
 over L then in L[G] there are no Suslin trees.Iterations with 
ountable support are de�ned just like iterations with �nitesupport, but with the 
ondition at limit stages α given as follows:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ 
 p(β) = 1Q̇β for all but 
ountably many β < α.This type of iteration is needed when one wishes to use for
ings whi
h arenot 


. Often one performs an iteration of length ℵ2, using for
ings of size
ℵ1. To show that 
ardinals above ℵ1 are preserved one uses:Proposition 3.2.3. Let P be a 
ountable support iteration of length ℵ2 su
hthat for β < ℵ2, P ↾ β has the ℵ2-

. Then P has the ℵ2-

.How does one show that ℵ1 is preserved in a 
ountable support iteration?One way is to assume that the for
ings used are 
ountably 
losed (i.e., every
ountable des
ending sequen
e of 
onditions has a lower bound). However11



this is too restri
tive for appli
ations. Shelah isolated a useful 
ondition onthe for
ings used in the iteration, 
alled properness, whi
h guarantees pre-servation of ℵ1, is maintained through 
ountable support iteration and hasmany appli
ations.De�nition. P is proper i� player II has a winning strategy in the followinggame: Player I begins by sele
ting a 
ondition p and 
hoosing a name α̇0 foran ordinal. Player II 
hooses an ordinal β0. At the n-th move, n > 0, I playsa name α̇n for an ordinal and II plays an ordinal βn. Now II wins the gamei� for some q ≤ p :
(∗) q 
 For all n, α̇n equals βk for some k.Noti
e that if II has a winning strategy in the above game, then every
ountable set of ordinals in a P -generi
 extension of V is a subset of a set ofordinals whi
h is 
ountable in V . Thus properness implies that ℵ1 is preser-ved. It is not di�
ult to show that the same de�nition of properness reusltsif we modify the above game so as to allow player II to play 
ountable setsof ordinals rather than single ordinals (where II wins i� some q ≤ p for
esthat ea
h ordinal name played by I belongs to the union of the 
ountablesets of ordinals played by II).Proposition 3.2.4. The following are equivalent:1. P is proper.2. For any un
ountable κ, every stationary A ⊆ Pω1

(κ) remains stationaryafter for
ing with P .3. For κ greater than the 
ardinality of the power set of P , there are CUB-many 
ountable M ≺ H(κ) su
h that any p ∈ M 
an be extended to q ∈ Pwhi
h is (P,M)-generi
: If D ∈M is dense on P then q for
es the generi
 tointerse
t D ∩M .It is easy to see that any 


 for
ing and any 
ountably 
losed for
ing isproper.Theorem 3.2.5. Let Pγ be a 
ountable support iteration of length γ of Q̇β ,
β < γ su
h that for every β < γ, 
β Q̇β is proper. Then Pγ is proper.A ni
e appli
ation of 
ountable support iteration is to prove the 
onsi-sten
y of the Borel Conje
ture. Let X be a subset of [0, 1]. X has strong12



measure 0 i� for every sequen
e 〈ǫn | n ∈ ω〉 of positive reals there exists asequen
e 〈In | n ∈ ω〉 of intervals with length In ≤ ǫn su
h that X ⊆
⋃

n In.Borel 
onje
tured that strong measure 0 sets are in fa
t 
ountable. This 
on-tradi
ts CH, but Laver proved the 
onsisten
y of Borel's Conje
ture using a
ountable support iteration of Laver for
ing.Laver for
ing is de�ned as follows. A set p ⊆ ω<ω is a tree i� it is 
losedunder initial segments. A tree p is a Laver tree i� for some s ∈ p (
alled thestem of p):1. For all t ∈ p either t ⊆ s or s ⊆ t.2. For all t ∈ p extending s the set S(t) = {a | t∗a ∈ p} (the set of su

essorsof t in p) is in�nite.Laver for
ing 
onsists of all Laver trees, partially ordered by in
lusion. If Gis generi
 then f =
⋃
{s | s is the stem of some p ∈ G} is a fun
tion from ωinto ω, a Laver real. Laver for
ing is neither 


 nor 
ountably 
losed.By Proposition 3.2.3, if we iterate Laver for
ing with 
ountable supportfor ℵ2 steps over L, we will have the ℵ2-

 and therefore preserve all 
ardinalsgreater than ℵ1. To show that this iteration preserves ℵ1, it su�
es to showLemma 3.2.6. Laver for
ing is proper.Proof. De�ne the relations ≤n as follows. Consider a 
anoni
al enumerationof ω<ω in whi
h s appears before t when s ⊆ t and in whi
h s ∗ a appearsbefore s∗(a+1) for a ∈ ω. If p is a Laver tree then the part of p above the stemis isomorphi
 to ω<ω and so we have a 
anoni
al enumeration 〈sp

i | i ∈ ω〉 ofit, where sp
0 is the stem of p. Note that if q ≤ p and sq

n = sp
m then n ≤ m.We de�ne:

q ≤n p i� p and q have the same stem and sp
i = sq

i for all i ≤ n.It is easy to show that if p0 ≥0 p1 ≥1 p2 ≥2 . . . then p =
⋂

n pn is a Lavertree, 
alled the fusion of the fusion sequen
e 〈pn | n ∈ ω〉.Fa
t. If p 
 α̇ ∈ Ord, m ∈ ω then there are q ≤m p and a 
ountable A ⊆ Ordsu
h that q 
 α̇ ∈ A. 13



Proof of Fa
t. We assume that m = 0, as the proof for general m is almostthe same. If p is a Laver tree, n ∈ ω, q ≤ p and the stem t of q is maximalamong {sp
0, . . . , s

p
n} then

r = q ∪ {u ∈ p | u * t and t * u}is a Laver tree ≤n p, 
alled the n-amalgamation of q into p. This has theobvious generalisation to the amalgamation of {q1, . . . , qk} into p when the
qi extend p and their stems are all the maximal nodes among {sp

0, . . . , s
p
n}(for a uniquely determined n).We 
onstru
t a fusion sequen
e 〈pn | n ∈ ω〉 with p0 = p and �nite sets Anso that the fusion of this sequen
e for
es α̇ ∈

⋃
nAn. At stage n we alreadyhave pn. Let t1, . . . , tk be all the maximal nodes among spn

0 , . . . , s
pn
n . For ea
h

i ∈ {1, . . . , k} if there exists qi ≤ pn with stem ti and an ordinal αi
n so that

qi 
 α̇ = αi
n then we 
hoose su
h qi and αi

n. Let An be the 
olle
tion of allthe αi
n 
hosen and let pn+1 be the amalgamation of {q1, . . . , qk} into pn. (If qidid not exist, then we take it to be the 
olle
tion of nodes in pn 
ompatiblewith ti.) We have pn+1 ≤n pn.Let p∞ be the fusion of the pn's and A =

⋃
nAn. To prove that p∞ 
 α̇ ∈

A, let q ≤ p∞. There are q̄ ≤ q and α ∈ Ord su
h that q̄ 
 α̇ = α. Let nbe large enough so that the stem of q̄ is among K = {spn

0 , . . . , s
pn
n }. There is

t ∈ q̄ that is a maximal node in K and therefore one of the nodes 
onsideredat stage n, say t = ti. Let r 
onsist of those nodes of q̄ whi
h are 
ompatiblewith t. As r and α satisfy the requirements for 
hoosing qi in the de�nitionof pn+1 we indeed have 
hosen qi and αi
n. Be
ause r ≤ qi it must be the 
asethat α = αi

n and so r 
 α̇ ∈ A. Thus ea
h q ≤ p∞ has an extension r su
hthat r 
 α̇ ∈ A. Therefore p∞ 
 α̇ ∈ A. This proves the Fa
t.Now we 
an show that II wins the proper game for Laver for
ing (in theversion where I plays a 
ondition p and names for single ordinals, II plays
ountable sets of ordinals and II wins i� there is q ≤ p whi
h for
es all thenames to be in the union of the sets or ordinals played). At the start of thegame let I sele
t p0 and the ordinal name α̇0. By the Fa
t there is p1 ≤0 p0and a 
ountable B0 su
h that p1 
 α̇ ∈ B0. At the nth move, when I plays
α̇n there are pn+1 ≤n pn and a 
ountable set Bn with pn+1 
 α̇n ∈ Bn. Thenthe fusion of the pn's veri�es that II wins the game. 2Laver proves the 
onsisten
y of Borel's Conje
ture by showing: If GCHholds in V and X is an un
ountable set of reals in V then X does not have14



strong measure 0 in V [G] where G is generi
 over V for the 
ountable support
ℵ2-iteration of Laver for
ing.Le
tures 7 and 8We now return to the study of absoluteness.Theorem 3.2. Abs(Σ2(H(ω1)),Proper) is 
onsistent relative to ZFC.Proof. By a proper ω1-iteration with 
ountable support 〈Pi | i < ω1〉, we 
anprodu
e a generi
 extension L[〈Gi | i < ω1〉] of L whi
h satis�es absoluten-ess for Σ2(H(ω1)) formulas with parameters from L with respe
t to furtherproper set-for
ing extensions. This is possible as there are only ω1 reals in Land properness is preserved by 
ountable support iteration. We 
an furtherguarantee that for ea
h i < ω1, L[Gi] = L[Xi] for some Xi ⊆ ω1: At stage
i, �rst for
e to guarantee absoluteness for some formula with a 
onstru
tibleparameter, and then for
e with the 
ountably-
losed (and therefore proper)for
ing that 
ollapses the 
ardinality of this for
ing to ω1 using 
ountable
onditions. The result is a model of the form L[〈Xi | i < ω1〉] with Xi ⊆ ω1for ea
h i, satisfying absoluteness for Σ2(H(ω1)) formulas with parametersfrom L with respe
t to further proper extensions. By dove-tailing, we 
anin fa
t ensure absoluteness for Σ2(H(ω1)) formulas with parameters from⋃

i<ω1
L[Gi] with respe
t to further proper extensions.Claim. Every real in L[〈Xi | i < ω1〉] belongs to L[〈Xi | i < j〉] for some

j < ω1.Proof of Claim: If R is a real in L[〈Xi | i < ω1〉] then R belongs to a
ountable, su�
iently elementary submodel M of L[〈Xi | i < ω1〉], as well asto the transitive 
ollapse M̄ of M . But M̄ is of the form Lα[〈Xi ∩ β | i < β〉]where β is the ω1 of M̄ . It follows that R belongs to L[〈Xi | i < β〉], provingthe Claim.Thus L[〈Xi | i < ω1〉] is a model of Abs(Σ2(H(ω1)),Proper), as desired.
2 Noti
e that in the model of the previous result, ω1 is the same as ωL

1 . Thenext result implies that if ωL[R]
1 is 
ollapsed for ea
h real R, then Σ2(H(ω1))absoluteness for proper set-for
ing extensions is as strong (in terms of 
onsi-sten
y) as for arbitrary set-for
ing extensions.15



Theorem 3.3. The following are equi
onsistent:1. Abs(Σ2(H(ω1)),Proper) holds and ω1 is ina

essible to reals (i.e., ωL[R]
1 is
ountable for ea
h real R).2. There exists a re�e
ting 
ardinal.Proof. The 
onsisten
y of 2 implies that of 1, as by Theorem 3.1 it evenimplies the 
onsisten
y of Σ2(H(ω1))-absoluteness for arbitrary set-for
ings.For the 
onverse we shall need some fa
ts about 0#. The existen
e of

0# is equivalent to the statement that the un
ountable 
ardinals form a
lass of order indis
ernibles in L: For any formula ϕ(x1, . . . , xn), L satis�es
ϕ(κ1, . . . , κn) for some in
reasing n-tuple κ1 < · · · < κn of un
ountable
ardinals i� L satis�es ϕ(κ1, . . . , κn) for all su
h in
reasing n-tuples. Thisimplies that all un
ountable 
ardinals are re�e
ting, Mahlo and mu
h morein L. The existen
e of 0# 
an also be 
hara
terised in terms of a relationshipbetween the 
ardinals of V and those of L:Theorem 3.3.1. (a) Suppose that 0# exists. Then for every 
ardinal κ, κ+ of
L is less than κ+. (b) Conversely, if κ+ of L is less than κ+ for some singular
ardinal κ, then 0# exists.Assume now Abs(Σ2(H(ω1)),Proper) and ω1 ina

essible to reals. Weshall show that either ω1 is Mahlo in L (i.e., if the set of 
ountable L-ina

essibles is stationary in L) or ω1 is re�e
ting in L. This proves theTheorem: If ω1 is Mahlo in L, then by the its ina

essibility in L, Lω1

is amodel of ZFC. For the same reason, the set {α | α < κ and Lα ≺ Lκ} is a 
lo-sed unbounded subset of κ. Sin
e ω1 is Mahlo in L there is an L-ina

essible
α < κ in this set, and for any su
h α, Lκ � α is re�e
ting.So assume that ω1 is not Mahlo in L (and therefore that 0# does notexist). We will show that ω1 is re�e
ting in L.To show that ω1 is re�e
ting in L it su�
es to show: If x belongs to Lω1

,
ϕ is a formula and for some L-
ardinal λ ≥ ω1, Lλ � ϕ(x) then there is su
ha λ < ω1 with x ∈ Lλ. For, given this, if ϕ is a Σ2 formula with parameter
x ∈ Lω1

, then Lλ � ϕ(x) for some L-
ardinal λ and therefore by assumptionfor some su
h λ < ω1; it follows that Lω1
� ϕ(x), as whenever λ0 < λ1 are

L-
ardinals, any Σ2 formula with parameters from Lλ0
whi
h is true in Lλ0is also true in Lλ1

. 16



The proof pro
eeds in three steps:Step 1. By a 
ountably-
losed for
ing we produ
e A ⊆ ω1 su
h that everysubset of ω1 belongs to L[A] and if Lα[A], α > ω1 is a model of ZFC−Power,then Lα[A] � There is an L-
ardinal λ su
h that Lλ satis�es ϕ(x).Step 2. By a further proper for
ing, we produ
e A∗ ⊆ ω1 su
h that if Lα[A∗∩γ]is any model of ZFC−Power satisfying γ = ω1, then Lα[A∗ ∩ γ] � There isan L-
ardinal λ su
h that Lλ satis�es ϕ(x).Step 3. By a further 


 for
ing, we produ
e a real R su
h that for all α, if
Lα[R] is a model of ZFC−Power in whi
h �ω1 exists�, then Lα[R] � There isan L-
ardinal λ su
h that Lλ satis�es ϕ(x).This will 
omplete the proof: The latter 
ondition on the real R is un
han-ged if we restri
t to 
ountable α, by re�e
tion. Therefore this 
ondition isequivalent to a Π1(H(ω1)) 
ondition, and by Abs(Σ2(H(ω1)),Proper) holdsfor some real R in V . By our assumption that ω1 is ina

essible to reals,
Lω1

[R] satis�es �ω1 exists� and therefore Lω1
[R] satis�es that there is an L-
ardinal λ su
h that Lλ � ϕ(x). Then λ really is an L-
ardinal and thereforewe have 
ompleted the proof that ω1 is re�e
ting in L.Now we turn to the proofs of Steps 1, 2 and 3.Le
tures 9 and 10Now we turn to the proofs of Steps 1, 2 and 3.Proof of Step 1. Choose an L-
ardinal λ su
h that Lλ � ϕ(x). Let δ > λ bea singular strong limit 
ardinal of un
ountable 
o�nality. Sin
e 0# does notexist, we have δ+ = (δ+ of L) and 2δ = δ+.Now 
ollapse δ to ω1 using 
ountable 
onditions: Conditions in Coll(ω1, δ)are fun
tions p from a 
ountable ordinal into δ, ordered by extension. As thereare only δ 
ountable subsets of δ, this for
ing has 
ardinality δ and thereforepreserves 
ardinals greater than δ. It follows that δ+ of L is the ω2 of theextension. CH holds in L[A0] as we have 
ollapsed 2ℵ0 < δ to ω1 withoutadding reals. Also, ea
h subset of ω1 added by this for
ing has a name of theform {(α̌, p) | p ∈ Xα, α < ω1}, where ea
h Xα is a subset of the for
ing; asthere are only 2δ = δ+ su
h names, it follows that 2ω1 = ω2 in the extension.17



Let G be the generi
 fun
tion added by Coll(ω1, δ) and de�ne A0 ⊆ ω1by α ∈ A0 i� g(α0) < g(α1), where α = 〈α0, α1〉 is a pairing fun
tion on ω1.Then in every model of ZFC−Power of the form Lα[A0], α > ω1, there is awell-ordering of ω1 of length δ and therefore we have Lα[A0] � There is an
L-
ardinal λ su
h that Lλ satis�es ϕ(x). It remains to guarantee that everysubset of ω1 belong to L[A0].In V [A0] we have ω2 = (δ+)L and 2ω1 = ω2. In this model let B ⊆ ω2
ode all subsets of ω1. We 
ode B by A1 ⊆ ω1 via a 
ountably 
losed almostdisjoint for
ing: In L[A0] 
hoose 〈bβ | β < ω2〉 to be distin
t subsets of ω1. We
an assume that these sets are almost disjoint, in the sense that if β0 6= β1,then bβ0

and bβ1
have 
ountable interse
tion. Conditions in the 
oding of B by

A1 are pairs (p, p∗), where p is a 
ountable subset of ω1 and p∗ is a 
ountablesubset of ω2, ordered by:
(p, p∗) ≤ (q, q∗) i� p end-extends q, p∗ 
ontains q∗ and p− q is disjoint from
bα for α ∈ B ∩ q∗.This for
ing is 
ountably 
losed, has the ω2-

 and therefore preserves 
ar-dinals. Also if A1 is the union of the �rst 
omponents of 
onditions in thegeneri
, then we have:
α ∈ B i� A1 is almost disjoint from bαand therefore B belongs to L[A1]. As the generi
 for this for
ing is entirelydetermined by the set A1, it follows that every subset of ω1 in V [A0][A1]belongs to L[A0][A1]. So the desired set satisfying the requirement of Step 1is A = {2α | α ∈ A0} ∪ {2α+ 1 | α ∈ A1}.Proof of Step 2. We produ
e A∗ using the following for
ing. P 
onsists of all
p : γ(p) → 2, γ(p) < ω1, su
h that:
(∗) For all γ ≤ γ(p) and all α, if Lα[A ∩ γ, p ↾ γ] is a model of ZFC−Powerwhere α > γ and γ is the ω1 of Lα[A∩ γ, p ↾ γ] then Lα[A∩ γ, p ↾ γ] � Thereis an L-
ardinal λ su
h that ϕ(x) holds in Lλ.A P -generi
 adds a fun
tion F : ω1 → 2 su
h that A∗ = {2β | β ∈ A} ∪
{2β + 1 | F (β) = 1} satis�es Step 2, sin
e this is guaranteed for 
ountable γby the de�nition of P and for γ = ω1 by Step 1. It remains to show:Lemma 3.3.2. P is proper. 18



Proof of Lemma. It su�
es to show that for CUB many 
ountable N ≺
Lω2

[A], ea
h 
ondition p in N 
an be extended to a 
ondition q su
h that qfor
es the generi
 to interse
t D ∩ N whenever D is a dense set in N . Wetake all 
ountable N ≺ Lω2
[A] whi
h have A and x as elements. Suppose that

p belongs to N and let N be isomorphi
 to N̄ = Lβ [A ∩ δ], where δ is the
ω1 of N̄ . Now N 
ontains a witness C to the non-Mahloness of ω1 in L, andsin
e C ∩ δ is unbounded in δ, it follows that δ belongs to C and is thereforesingular in L. Therefore β is not an L-
ardinal. Let µ be the least ordinal sothat β is 
ollapsed in Lµ.We shall build q to be an extension of p of length δ, as the union of
onditions of length less than δ. (∗) holds for q when γ of (∗) is less than δdue to the fa
t that q is the union of 
onditions of length less than δ. (∗) holdsfor q when γ of (∗) is equal to δ and α of (∗) is at most β, by the elementarityof N in Lω2

[A]. (∗) holds for q when γ of (∗) is equal to δ and α of (∗) isbetween β and µ, as in this 
ase any L-
ardinal of Lβ is also an L-
ardinal of
Lα. Thus it su�
es to build q so that δ is 
ollapsed in Lµ[A ∩ δ, q], for then
(∗) is va
uous when γ of (∗) is equal to δ and α of (∗) is at least µ.As β is 
ollapsed in Lµ[A∩ δ] and we 
an assume that δ is not, we 
an write
Lβ[A ∩ δ] as the union of a 
ontinuous 
hain 〈Mi | i < δ〉 of Σ1-elementarysubmodels of Lβ[A ∩ δ], where ea
h Mi is 
ountable in Lµ[A ∩ δ] and the
hain itself belongs to Lµ[A ∩ δ]. Let C be the set of interse
tions of themodels of this 
hain with δ, a CUB subset of δ. We de�ne an ω-sequen
e
p = p0 ≥ p1 ≥ · · · of 
onditions below p su
h that ea
h pn belongs to N ,ea
h dense set in N is for
ed by some pn to interse
t the generi
 in N and if
q is the union of the pn's, then {η ∈ C | q(η) = 1} is a 
o�nal subset of C ofordertype ω. Then δ is 
ollapsed in Lµ[A ∩ δ, q], as desired.To de�ne the pn's, enumerate the dense D ∈ N in an ω-sequen
e 〈Dn |
n ∈ ω〉 and 
hoose a 
o�nal subset C0 of C of ordertype ω. Indu
tively, 
hoose
pn as follows: If pn is de�ned then �rst extend pn at the next ω ordinals to
ode some Mi ∩ δ ∈ C0, where both Dn and this extension belong to Mi+1.Then extend further to length Mi ∩ δ, always assigning the value 0. Finally,
hoose pn+1 to assign the value 1 at Mi ∩ δ and belong to Dn ∩ Mi+1. 2(Lemma 3.3.2)Proof of Step 3. Now we 
ode A by a real R. As ω1 is not Mahlo in L, thereis a CUB C ⊆ ω1, C ∈ L, 
onsisting of L-singulars. Let 〈αi | i < ω1〉 bethe in
reasing enumeration of C ∪ {0} and for ea
h i let Ri be a real 
oding19



the 
ountable ordinal αi+1. Then if we de�ne B to be {αi + n | i < ω1 and
n ∈ Ri}, we have: α 
ountable → α 
ountable in L[B ∩ α]. Using this, we
hoose distin
t reals Rα, α < ω1 so that Rα 
an be de�ned uniformly in
L[B ∩ α]. We may assume that the Rα's are almost disjoint (mod �nite).Now use these reals to 
ode B, A∗ by a real R using a 


 almost disjoint
oding: A 
ondition is a pair (p, p∗) where p is a �nite subset of ω and p∗ isa �nite subset of ω1, ordered by
(p, p∗) ≤ (q, q∗) i� p end-extends q, p∗ 
ontains q∗ and p− q is disjoint from
R2α when α ∈ B ∩ q∗ and disjoint from R2α+1 when α ∈ A∗ ∩ q∗.If R is the union of the �rst 
omponents of the generi
, then R is almostdisjoint from R2α i� α ∈ B and is almost disjoint from R2α+1 i� α ∈ A∗.The for
ing is 


 and therefore preserves 
ardinals. Finally, as A∗ ∩ ω

Lα[R]
1is de�nable in Lα[R] for ea
h α < ω1, R ful�lls the 
ondition of Step 3. 2(Theorem 3.3) Le
ture 11We have seen thatΣ2(H(ω1)) absoluteness for proper for
ings is 
onsistentrelative to ZFC, but in the presen
e of the additional assumption that ω1 isina

essible to reals, it has the 
onsisten
y strength of a re�e
ting 
ardinal.If �proper� is weakened to �semiproper�, the situation is the same, using amodi�
ation of the proof of Theorem 3.2.A for
ing P is stationary-preserving (at ω1) i� stationary subsets of ω1remain stationary in P -generi
 extensions.Theorem 3.4. Suppose that Abs(Σ2(H(ω1)), stationary-preserving set-for
ing)holds. Then ω1 is ina

essible to reals.Corollary 3.5. Abs(Σ2(H(ω1)), stationary-preserving set-for
ing) is equi
on-sistent with the existen
e of a re�e
ting 
ardinal.Proof of Theorem 3.4. We �rst prove:Lemma 3.4.1. If 0# does not exist then every set of ordinals is 
onstru
tiblefrom a real in a stationary-preserving set-for
ing extension.20



Proof. As in Step 1 of the proof of Theorem 3.3, we 
an produ
e A ⊆ ω1by a 
ountably-
losed for
ing so that in the extension H(ω2) = Lω2
[A] andthe given set of ordinals belongs to H(ω2). Let P be the �reshaping for
ing�,whose 
onditions are p : |p| → 2, |p| < ω1 su
h that for all α ≤ |p|, α is
ountable in L[A ∩ α, p ↾ α]. We will show that P is stationary-preserving.Assuming this, let G be P -generi
 and F : ω1 → 2 the union of the 
onditionsin G. Using F , we 
an 
hoose a sequen
e 〈Rα | α < ω1〉 of distin
t reals su
hthat Rα is de�nable uniformly in L[A∩α, F ↾ α] (by taking Rα to be the leastreal in L[A∩α, F ↾ α] distin
t from the Rβ , β < α). Now as in Step 3 of theproof of Theorem 3.3, we 
an 
ode A,G by a real via a 


 for
ing, resultingin a stationary-preserving extension in whi
h the given set of ordinals is
onstru
tible from a real, as desired.Now we show that P is stationary-preserving. Given p ∈ P , a stationary

X ⊆ ω1 and a name σ for a CUB subset of ω1, let C be a CUB subset of ω1su
h that:1. If α is in C and β is less than α then p is in Lα[A] and every q ≤ p in
Lα[A] has an extension r ∈ Lα[A] su
h that r 
 β∗ ∈ σ for some β∗ between
β and α.2. If α is in C then C ∩ α belongs to L[A ∩ α].
C is 
onstru
ted by 
hoosing Lγ [A], γ > ω1, to 
ontain p, σ and A and taking
C to be {i < ω1 | i = ω1 ∩Mi, where Mi = the Skolem hull of i ∪ {p, σ, A}in Lγ[A]}.Now 
hoose α ∈ Lim C∩X and let 〈γn | n ∈ ω〉 be any in
reasing ω-sequen
e
ontained in C with supremum α. We indu
tively de�ne 
onditions qn oflength γn as follows. Set q0 to be the L[A]-least extension of p of length γ0.If qn is de�ned, let q′n be the L[A]-least extension of qn su
h that q′n(γn) = 1and q′n for
es some βn greater than γn to belong to σ; note that by property 1above, γ′n = (the length of q′n) is less than the least element of C greater than
γn. Let Rn be a real 
oding the ordinal γn+1 and extend q′n to q′′n of length
γ′n + ω by de�ning q′′n(γ′n + k) = Rn(k). Then qn+1 is obtained by extending
q′′n to length γn+1, always taking the value 0 at and above γ′n + ω. It is 
learthat qn+1 is a 
ondition, using the de�nition of q′′n.Let q be the union of the qn's. Then {γ ∈ C ∩ [γ0, α) | q(γ) = 1} equals
{γn | n ∈ ω}. By property 2 above, {γn | n ∈ ω} belongs to L[A ∩ α, q], andtherefore α is 
ountable in L[A, q], establishing that q is a 
ondition. As q21



for
es that σ ∩ α is unbounded in α, q also for
es that α belongs to σ. Sin
e
α belongs to X, we have q 
 X ∩ σ 6= ∅, as desired. 2 (Lemma 3.4.1)Note that Lemma 3.4.1 also holds under the weaker hypothesis that R#does not exist for some real R, by relativisation to R. (Indeed, one only needsthat A# does not exist for some set of ordinals A.)Le
tures 12 and 13Now to prove Theorem 3.4, suppose that ω1 is not ina

essible to reals.Thus for some real R, ω1 = ω1 of L[R]. As the real R plays no role in the proofbelow, we will assume that R equals 0. In parti
ular 0# does not exist andtherefore by Lemma 3.4.1, in a stationary-preserving set-generi
 extension,
H(ω2) = Lω2

[R] for some real R. For the moment, argue in this extension.As the real R plays no role in the arguments below, we also assume that Requals 0.For any A ⊆ ω1 
onsider now the fun
tion fA : ω1 → ω1 de�ned by
fA(α) = the least β su
h that α is 
ountable in Lβ+1[A ∩ α].Note that by assumption, ω1 = ωL

1 and therefore fA is totally de�ned forevery A. We say that A is faster than B i� fA < fB on a CUB.Lemma 3.4.2. (Ralf S
hindler) For any A there is a faster B in a furtherstationary-preserving for
ing extension.Given this lemma, we prove Theorem 3.4. Set A0 = R0 = ∅. By thelemma there is A1 whi
h is faster than A0 in a stationary-preserving for
ingextension. A1, together with a CUB set C1 witnessing that A1 is faster than
A0, 
an be 
oded by a real R1 via a 


 for
ing; we write A1 = A(R1),
C1 = C(R1). Then R1 satis�es the Π1(H(ω1)) 
onditionFor all α < ω1, fA(R1)(α) < f∅(α) for all α in the CUB set C(R1).By Σ2(H(ω1)) absoluteness for stationary-preserving for
ings, there is su
ha real R1 in the original ground model V . Then the real R1 is faster than thereal R0 = ∅. But we 
an repeat this, obtaining Rn+1 whi
h is faster than Rn,for ea
h n. Thus fRn+1

< fRn on a CUB for ea
h n, a 
ontradi
tion.22



Proof of Lemma 3.4.2. The proof is similar to the proof that the reshapingfor
ing is stationary-preserving. Consider the for
ing P whose 
onditions arepairs (b, c) where:
c is a 
ountable 
losed subset of ω1.
b : max c→ 2.For all α ∈ c, α is 
ountable in LfA(α)[b ↾ α].Conditions are ordered by: (b0, c0) ≤ (b1, c1) i� c0 end-extends c1 and b0 ∩
max c1 = b1. Any 
ondition 
an be extended so as to in
rease max c above anygiven 
ountable ordinal: Given (b, c) there are arbitrary large limit ordinals
α > max c with fA(α) > α. We obtain a 
ondition by adding α to c andextending b to any b′ of length α so that α is 
ountable in Lα+1[b

′].Thus if G is P -generi
 then B = ∪{b | (b, c) ∈ G for some c} is faster than
A, as witnessed by the CUB set C = ∪{c | (b, c) ∈ G for some b}. It remainsonly to show that P is stationary-preserving.Suppose that p = (b, c) ∈ P , X is stationary and σ is a name for a CUB.Let C0 ⊇ C1 be CUB sets su
h that:1. If α is in C0 and β is less than α then p is in Lα and every q ≤ p in Lαhas an extension r ∈ Lα su
h that r 
 β∗ ∈ σ for some β∗ between β and α.2. If α is in C1 then fA(α) > α and C0 ∩ α belongs to LfA(α).
C0 is 
onstru
ted by 
hoosing Lγ , γ > ω1, to 
ontain p, σ, A and taking C0to be {i < ω1 | i = ω1 ∩Mi, where Mi = the Skolem hull of i ∪ {p, σ, A} in
Lγ}. Then C1 is de�ned to be {i < ω1 | i = ω1 ∩Ni, where Ni = the Skolemhull of i ∪ {p, σ, A, γ} in Lγ+ω}.Now 
hoose α ∈ Lim C1 ∩ X and let 〈γn | n ∈ ω〉 be any in
reasing ω-sequen
e 
ontained in C1 with supremum α. We indu
tively de�ne 
onditions
qn = (bn, cn) of length γn as follows. Set q0 to be the L-least extension of pof length γ0. If qn is de�ned, let q′n = (b′n, c

′
n) be the L-least extension of qnsu
h that b′n(γn) = 1 and q′n for
es some βn greater than γn to belong to σ;note that by property 1 above, γ′n = (the length of q′n) is less than the leastelement of C0 greater than γn. Let Rn be a real 
oding the ordinal γn+1 andextend b′n to b′′n of length γ′n + ω by de�ning b′′n(γ′n + k) = Rn(k) for ea
h

k ∈ ω. Then qn+1 is obtained by setting cn+1 = c′n ∪ {γn+1} and extending23



b′′n to length γn+1, always taking the value 0 at and above γ′n + ω. Note that
qn+1 is a 
ondition as γn+1 is 
ountable in Lγn+1+1[bn+1] but fA(γn+1) > γn+1.Let b be the union of the bn's and c the union of the cn's together withthe ordinal α. Then {γ ∈ C0 ∩ [γ0, α) | b(γ) = 1} equals {γn | n ∈ ω} and byproperty 2 above, C0 ∩ α belongs to LfA(α). It follows that α is 
ountable in
LfA(α)[b], establishing that q = (b, c) is a 
ondition. As q for
es that σ ∩ α isunbounded in α, q also for
es that α belongs to σ. Sin
e α belongs to X, wehave q 
 X ∩ σ 6= ∅, as desired. 2This 
ompletes the proof of Theorem 3.Persisten
e of Σ3(H(ω1)) absolutenessIt is reasonable to 
onsider Abs(Σ3(H(ω1)),P) provided one imposes thehypothesis that Σ3(H(ω1)) formulas persist for P-generi
 extensions. Thelatter is equivalent to saying that Abs(Σ2(H(ω1)),P) holds in all P-generi
extensions, a form of �two-step absoluteness� for P-for
ing. We 
onsider nextsome examples of this.Theorem 6.1. The following are equivalent:1. All set-generi
 extensions obey Σ2(H(ω1))-absoluteness for further set-generi
 extensions.2. Every set of ordinals has a #.Proof. (1 → 2) Assume property 1 and we �rst show that 0# exists. If not,then κ+ = κ∗ of L, where κ = ℵω. Let V [G] be a set-generi
 extension where
κ+ of L = ω1, obtained by 
ollasping κ to ω. Then for some real R in V [G],
ω1 = ω1 of L[R]. This is a Π2(H(ω1)) property:
ω1 = ω1 of L[R] i�
H(ω1) � ∀α∃S(S is a real in L[R] and S 
odes α).But this property is false in V [G][H ], where H 
ollapses ω1 of L[R] to ω. So
Σ2(H(ω1)) absoluteness fails between V [G] and V [G][H ].The same argument shows that R# exists for ea
h real R. As property 1holds in all set-generi
 extensions, it follows that in all set-generi
 extensions,every real has a #, i.e., every set of ordinals has a #.Le
tures 14 and 1524



(2 → 1) Re
all that elements of H(ω1) 
an be 
oded by reals, and the setof reals C 
oding an element of H(ω1) forms a Π1
1 set (i.e., a set of the form

{x | ∀yϕ(x, y)} where x, y vary over reals and ϕ is arithmeti
al). It followsthat a Σ2(H(ω1)) formula 
an be translated into a Σ1
3 formula about reals:

∃a ∈ H(ω1)∀b ∈ H(ω1)ϕ(a, b) (ϕ ∆0) i�
∃x ∈ C∀y ∈ Cϕ∗(x, y),where ϕ∗ is arithmeti
al. As C is Π1

1 the latter formula is Σ1
3. So property 1of the theorem follows from:

(∗) All set-generi
 extensions obey Σ1
3 absoluteness with respe
t to furtherset-generi
 extensions.We will prove (∗) under the assumption that every set has a #, or equiva-lently, that in every set-generi
 extension, every real has a #.First just assume that every real has a # and let A = {x | ∀y∃zϕ(x, y, z)},

ϕ arithmeti
al, be a Π1
2 set. Assuming that A is nonempty, we show how to
hoose a �
anoni
al� element of A.A tree on a set B is a 
olle
tion of �nite sequen
es of elements of B
losed under initial segment. If T is a tree on B1 ×B2 × · · · ×Bn, si a �nitesequen
e from Bi for 1 ≤ i < n and the si's all have the same length, then

T (s1, . . . , sn−1) = {tn | (s1 ↾ l, . . . , sn−1 ↾ l, tn) ∈ T , where l = length of
tn ≤ length of ea
h si} (and where we identify an n-tuple of sequen
es oflength l with a sequen
e of length l of n-tuples in the natural way). If xi isan ω-sequen
e from Bi for ea
h 1 ≤ i < n then T (x1, . . . , xn−1) = ∪{T (x1 ↾

l, . . . , xn−1 ↾ l) | l < ω}.Now B = {(x, y) | ∃zϕ(x, y, z)} is Σ1
1 and therefore there is a tree T on

2 × 2 × ω su
h that (x, y) ∈ B i� T (x, y) has an in�nite bran
h. Then:
x ∈ A i�
∀y T (x, y) has an in�nite bran
h.Now let κ be an un
ountable regular 
ardinal and de�ne the orderings Uκ and
Uκ(x) (x a real) as follows: An element of Uκ is a triple (s, t, f), with s and
t �nite sequen
es of 0's and 1's of the same length and f an order-preservingfun
tion from (T (s, t)∗, <∗) into κ, where T (s, t)∗ is the �nite set of all �nite25



sequen
es in T (s, t) taking values less than Length(s) = Length(t), and where
<∗ is the Kleene-Brouwer order on �nite sequen
es of natural numbers: u <∗ vi� u properly extends v or u is less than v in the lexi
ographi
 order. Theordering on Uκ is the natural one: (s0, t0, f0) ≤ (s1, t1, f1) i� s0, t0, f0 extend
s1, t1, f1, respe
tively. For a real x, Uκ(x) denotes the set of pairs (t, f) su
hthat for some n, (x ↾ n, t, f) belongs to Uκ.Claim 1. x ∈ A i� Uκ(x) is well-founded.Proof of Claim 1. An in�nite des
ending sequen
e through Uκ(x) yields areal y and an order-preserving fun
tion from (T (x, y), <∗) into κ; it followsthat T (x, y) has no in�nite bran
h, and therefore x does not belong to A.Conversely, if x does not belong to A, then 
hoose y su
h that T (x, y) hasno in�nite bran
h, 
hoose an order-preserving fun
tion f from the 
ountablewell-ordering (T (x, y), <∗) into κ and de�ne fn = f ↾ T (x ↾ n, y ↾ n)∗; then
(x ↾ n + 1, y ↾ n + 1, fn+1) is less than (x ↾ n, y ↾ n, fn) in Uκ for ea
h n, so
(y ↾ n + 1, fn+1) is less than (y ↾ n, fn) in Uκ(x) for ea
h n; it follows that
Uκ(x) is not well-founded. 2Note that if x belongs to A then the 
anoni
al ranking fun
tion F x on
Uκ(x) is 
onstru
tible from a real, as it is 
onstru
tible from x and T . Nowwe want to 
hoose a parti
ular x su
h that Uκ(x) is well-founded. For thispurpose we need to 
ompare ranking fun
tions on the orderings Uκ(s, t) =
{f | (s ↾ n, t ↾ n, f) ∈ Uκ for some n}. Fix s, t of the same length and let
L∗ denote ∪{L[x] | x a real}. Suppose that F,G ∈ L∗ are fun
tions from
Uκ(s, t) into the ordinals. We write F ≤∗ G i� from some CUB C ⊆ κ,
C ∈ L∗, F (f) ≤ G(f) for all f ∈ Uκ(s, t) with Range (f) ⊆ C. For any
F,G either F ≤∗ G or G ≤∗ F , sin
e F,G are 
onstru
tible from reals andtherefore by our assumption that every real has a #, there is a CUB subsetof κ whi
h forms a set of order-indis
ernibles relative to F,G. Therefore ≤∗gives a wellordering if we identify F with G when F =∗ G.Given n let t1, t2, . . . , t2n list the 0, 1-sequen
es of length n in lexi
ographi
order. Then de�ne αx

n = 〈β1, . . . , β2n〉, where βi is the rank of F x ↾ Uκ(x ↾

n, ti) in ≤∗.We now de�ne a 
anoni
al element of A. Choose x1 to minimize αx
1 , x(0)(in the lexi
ographi
 ordering of �nite sequen
es of ordinals) for x ∈ A and set

n0 = x1(0). Then 
hoose x2 to minimize αx
2 , x(1) for x ∈ A whi
h minimize26



αx
1 , x(0) and set n1 = x2(1). Continue in this way, produ
ing a real x∗ =

〈n0, n1, . . .〉.Claim 2. x∗ ∈ A.Proof of Claim 2. For ea
h n and t of length n 
hoose F n(t) with domain
Uκ(x∗ ↾ n, t) so that the ranks of the F n(t) realise αxn

n . Then for some CUB C,the F n(t) restri
ted to elements of Uκ(x∗ ↾ n, t) with range in C 
ohere withea
h other. It follows that U(x∗) is well-founded, and therefore x∗ belongs to
A. 2Now we are ready to verify (∗) (and therefore property 1 of the theorem),assuming that in every set-generi
 extension, every real has a #. Supposethat V [G] is a set-generi
 extension of V and ϕ(x) is a Π1

2 formula with realparameter from V [G]. Suppose that V [G][H ] is a set-generi
 extension of
V [G] where ϕ(x) holds for some real x. We want to show that ϕ(x) holds in
V [G] for some x in V [G]. By assumption every real in V [G][H ] has a #. Let
κ be greater than the size of the for
ing that produ
es H over V [G]. Nowform the ordering Uκ as above in V [G], for the Π1

2 set A = {x | ϕ(x)}. Uκ hasthe same de�nition in V [G][H ] as it has in V [G]. Any ranking fun
tion on
Uκ(s, t), s, t �nite 0, 1-sequen
es of the same length, whi
h is 
onstru
tiblefrom a real in V [G][H ] is =∗-equivalent to su
h a fun
tion in V [G] (with aCUB C ⊆ κ in V [G] witnessing this), as H is generi
 over V [G] for a for
ingof size less than κ.Now in V [G][H ], 
onsider the set of pairs (s, F ), where s is a �nite 0, 1-sequen
e and F is a ranking fun
tion on Uκ(s) 
onstru
tible from a real in
V [G]. Order su
h pairs by (s0, F0) ≤ (s1, F1) i� s0 extends s1 and F0 extends
F1 on all (t, f) with Range (f) ⊆ C, for some CUB C ⊆ κ in V [G]. Then in
V [G][H ] this ordering is not well-founded, as Uκ(x) has a ranking fun
tion
onstru
tible from a real for some x, and the restri
tion of this fun
tion to
Uκ(x ↾ n) is =∗-equivalent to a fun
tion 
onstru
tible from a real in V [G],witnessed by a CUB C ⊆ κ in V [G]. It follows that this ordering is notwell-founded in V [G], Uκ(x) is well-founded for some real x in V [G] and thegiven Π1

2 formula ϕ(x) holds for some real in V [G], as desired. 2Le
tures 16 and 1727



Theorem 9. The following are equi
onsistent:1. Σ3(H(ω1))-absoluteness for set-generi
 extensions and every set has a #.2. There exists a re�e
ting 
ardinal and every set has a #.Proof. We imitate the proof of Theorem 3.1. Suppose that every set hasa # and κ is re�e
ting. Let V [G] be the generi
 extension of V obtainedby 
ollapsing every ordinal less than κ to ω; we show that V [G] witnessesproperty 1. Suppose that ϕ is a Σ3(H(ω1)) formula with parameter from V [G]whi
h is for
ed to hold in some set-generi
 extension of V [G]. First assumethat the parameter in ϕ belongs to V . Then the following Σ2 statementmentioning this parameter holds in V :There is a 
ardinal δ and a for
ing P ∈ H(δ) su
h that H(δ) � (P 
 ϕ).By re�e
tion there is su
h a δ, P in H(κ). Let V [g] be P -generi
 over V ,
g ∈ V [G]; there is su
h a g sin
e the V -power set of P is 
ountable in
V [G]. Then V [g] satis�es ϕ. Sin
e V � Every set has a #, ϕ is persistent forset-generi
 extensions of V and therefore ϕ also holds in V [G]. Sin
e V [G]also satis�es �Every set has a #�, we are done. If the parameter in ϕ doesnot belong to V , then as in the proof of Theorem 3.1, we fa
tor V [G] as
V [G(< α)][G(≥ α)], where the parameter belongs to V [G(< α)], α < κ.Now assume that 1 holds. We show that ω1 is re�e
ting in an appropriateinner model where every set has a #.Fa
t. Suppose that every set has a #. Then there is a smallest inner model
L# in whi
h every set has a #. Moreover, this inner model has the followingproperty: There is a sequen
e 〈L#

α | α ∈ Ord〉, su
h that:1. For ea
h α, L#
α is transitive of ordinal height α.2. α ≤ β → L#

α ⊆ L#
β .3. For ea
h in�nite L#-
ardinal θ, L#

θ = H(θ)L#.4. For ea
h in�nite 
ardinal θ, 〈L#
α | α < θ〉 is Σ2-de�nable over H(θ).Assuming 1, we now show that κ = ωV

1 is re�e
ting in L#. Suppose that
L# � ϕ, where ϕ is a Σ2 formula with parameters from L#

κ . We must showthat ϕ is true in L#
κ . Sin
e ϕ is true in L#, by re�e
tion it is also true in

L#
θ for some L#-
ardinal θ. There is a set-generi
 extension of V in whi
h28



θ is 
ountable. Therefore in some set-generi
 extension of V the followingformula (with parameters from L#
κ ⊆ H(ω1)

V ) is true:There is a 
ountable ordinal θ su
h that θ is a 
ardinal of L# and L#
θ � ϕ.This formula is Σ3(H(ω1)) as 〈L#

α | α < ω1〉 is Σ2-de�nable over H(ω1). Byour assumption of Σ3(H(ω1))-absoluteness, the above formula is also true in
V . Therefore there is an ordinal θ less than ωV

1 = κ su
h that L#
θ � ϕ and

H(ω1)
V � θ is an L#-
ardinal. Then θ really is an L#-
ardinal and therefore

L#
θ is Σ1-elementary in L#

κ . As ϕ is Σ2, it follows that L#
κ also satis�es ϕ, asdesired. 2

Σ4(H(ω1))-absoluteness for set-generi
 extensions is reasonable provided
Σ4(H(ω1)) formulas persist for set-generi
 extensions, i.e., provided that allset-generi
 extensions obey Σ3(H(ω1))-absoluteness for further set-generi
extensions.Theorem 10. Assume that n is greater than 0. Then the following are equi-
onsistent:1. All set-generi
 extensions obey Σn+2(H(ω1))-absoluteness for further set-generi
 extensions.2. There exist n strong 
ardinals.Proof. We �rst show that the 
onsisten
y of 2 implies that of 1.De�nition. Suppose that κ < λ are ina

essibles. Then κ is λ-strong i� thereis an elementary embedding j : V → M with 
riti
al point κ su
h that
H(λ) ⊆M . And κ is strong i� it is λ-strong for all ina

essible λ > κ.Fa
t. If κ is λ-strong then there is an elementary j : V →M witnessing thissu
h that Mκ ⊆ M .We shall need some fa
ts about trees. A tree on a set X is a subset ofSeq(X) = the set of �nite sequen
es of elements of X 
losed under initialsegments. For T a tree on X we let [T ] denote the set of in�nite bran
hesthrough T , i.e., the set of f ∈ Xω su
h that f ↾ n ∈ T for all n. We thinkof a tree on Y × Z as a set of pairs (s, t) ∈ Seq(Y ) × Seq(Z) where s and thave the same length. If T is a tree on Y × Z and s ∈ Seq(Y ) then we set
Ts = {t | (s ↾ Length(t), t) ∈ Y } and for x ∈ Y ω, Tx = ∪{Tx↾n | n ∈ ω}. The29



proje
tion p[T ] is de�ned by: x ∈ p[T ] i� Tx has an in�nite bran
h. We saythat p[T ] is Z-Suslin via T .Now we 
onsider κ-absolute Suslin representations. We say that a set Gis (< κ)-generi
 over a model M i� G is P -generi
 over M where M � Phas 
ardinality less than κ. Suppose that T , U are trees on X × Y , X × Z,respe
tively. We say that T , U are κ-absolute 
omplements i� whenever Gis (< κ)-generi
 over V , we have V [G] � p[T ] = Xω − p[U ]. The tree T is
κ-absolutely 
omplemented i� there is a U su
h that T , U are κ-absolute
omplements.Remark. Note that if p[T ], p[U ] are disjoint in V then they are automati
allydisjoint in any extension of V , by a simple absoluteness argument. Whatabsolute 
omplementation adds is that the union of p[T ], p[U ] is all of Xω.De�nition. A ⊆ Xω is κ-absolutely Suslin i� A = p[T ] for some κ-absolutely
omplemented tree T . If A is de�ned by the formula ϕ (with parameters),then the pair (A,ϕ) is κ-absolutely Suslin i� A = p[T ] for some κ-absolutely
omplemented tree T with the additional property that p[T ] = {x | ϕ(x)}in all (< κ)-generi
 extensions. We say that A is absolutely Suslin i� A is
κ-absolutely Suslin for every κ; similarly for (A,ϕ).The proof of Theorem 6.1 (2 → 1) shows:Theorem 10.1. If every set has a # then (A,ϕ) is absolutely Suslin whenever
A ⊆ ωω is the set of reals de�ned by a Σ1

3 formula ϕ (with real parameters).We shall prove:Theorem 10.2. Suppose that there exists a strong 
ardinal κ, A ⊆ ωω × ωωand (A,ϕ) is absolutely Suslin. Let B = {x | (x, y) ∈ A for some y} and ψthe formula ∃y ∈ ωωϕ(x, y). Then (B,ψ) is absolutely Suslin in V [G], where
G is generi
 for the Lévy 
ollapse of 22κ to ω.Now using this, we prove that the 
onsisten
y of 2 implies that of 1.Suppose that κ is the least strong 
ardinal of V . It follows that V is 
losedunder #, and therefore by Theorem 10.1, (A,ϕ) is absolutely Suslin when
A is the set of reals de�ned by a Σ1

3 formula ϕ. The same is true for Π1
3.By Theorem 10.2, after 
ollapsing 22κ to ω, we obtain a model where (B,ψ)30



is absolutely Suslin when B is de�ned by a Σ1
4 formula ψ. In parti
ular, forea
h κ there is a tree Tκ su
h that p[Tκ] = {x | ψ(x)} in all (< κ)-generi
extensions; this implies Σ1

4-absoluteness in all set-generi
 extensions, by theabsoluteness of well-foundedness for trees. If there were two strong 
ardinalsin V , then there is still a strong 
ardinal in this generi
 extension, and we
an repeat the argument, obtaining a model where Σ1
5-absoluteness holds forset-generi
 extensions, et
. As Σ1

n+3-absoluteness is the same as Σn+2(H(ω1))-absoluteness, we are done. Le
ture 18Proof of Theorem 10.2. Suppose that A is the proje
tion of the tree T on
ω×ω×Z, where T has a λ-absolute 
omplement U and p[T ] = {x | ϕ(x)} inall (< λ)-generi
 extensions. Let S be the same as the tree T , but regardedas a tree on ω × (ω × Z). So p[S] = {x | (x, y) ∈ p[T ] for some y} = B, and
p[S] equals {x | ∃yϕ(x, y)} in all (< λ)-generi
 extensions.Claim. Suppose that κ is λ-strong and j : V → M witnesses this, where
Mω ⊆ M . Suppose that T is a tree on ω × Z for some Z. Let G be generi
over V for the Lévy 
ollapse of 22κ to ω. Then in V [G], j(T ) has a λ-absolute
omplement.We prove Theorem 10.2 using this Claim. Applying the Claim to the tree
S, we obtain a λ-absolute 
omplement for j(S) in V [G], where G is generi
for the Lévy 
ollapse of 22κ to ω. It su�
es to show that p[S] = p[j(S)]in V [G][H ] for any (< λ)-generi
 H , for then S has the same λ-absolute
omplement as j(S). Argue now in V [G][H ]. As p[S] = {x | (x, y) ∈ p[T ] forsome y}, p[j(S)] = {x | (x, y) ∈ p[j(T )] for some y}, it su�
es to show that
p[T ] = p[j(T )]. Clearly p[T ] ⊆ p[j(T )], as j sends a bran
h through T to abran
h through j(T ). Conversely, if (x, y) /∈ p[T ], then (x, y) ∈ p[U ] (where
U is a λ-absolute 
omplement for T ), so (x, y) ∈ p[j(U)]; by elementarity
p[j(U)] and p[j(T )] are disjoint in M , and therefore by absoluteness arereally disjoint. Therefore (x, y) /∈ p[j(T )].To prove the Claim we shall need some fa
ts about measures. For any set
Z, Measκ(Z) denotes the set of κ-additive measures on Z<ω. If κ is ω1 thenwe write Meas(Z) for Measκ(Z). If µ belongs to Meas(Z) then the dimensionof µ, written dim(µ), is the unique n su
h that µ(Zn) = 1. If µ, ν ∈ Meas(Z)then we say that µ proje
ts to ν i� dim(ν) ≤ dim(µ) and for A ⊆ Zω:31



ν(A) = µ({u ∈ Zω | u ↾ dim(ν) ∈ A}). If µ proje
ts to ν then there is anatural embedding πν,µ : Ult(V, ν) → Ult(V, µ) obtained by sending [f ]ν to
[f ∗]µ, where f ∗(u) = f(u ↾ dim(ν)) for all u ∈ Zω.A tower of measures on Z is a sequen
e 〈µn | n < ω〉 su
h that µn ∈Meas(Z) has dimension n for ea
h n, and whenever m ≤ n < ω, µn proje
tsto µm. If 〈µn | n < ω〉 is a tower of measures then Ult(V, 〈µn | n < ω〉)denotes the dire
t limit of the Ult(V, µn) via the embeddings πµm,µn. One
an show that Ult(V, 〈µn | n < ω〉) is well-founded i� whenever µx↾n(An) = 1for ea
h n there exists f su
h that f ↾ n ∈ An for ea
h n.Proof of Claim. There is a tree T ∗ ⊆ T of size κ su
h that p[T ] = p[T ∗] in any
(< κ)-generi
 extension of V (obtained by listing all P , σ where P ∈ H(κ)and σ is a P -name for a real, and for ea
h su
h P , σ putting into T ∗ allelements of Z whi
h are for
ed by some 
ondition in P to belong to the leastbran
h through T proje
ting to σ). We 
an assume that T ∗ is a tree on ω×κ.In V [G] the set Measκ(κ<ω) is 
ountable. Let m : ω → j[Measκ(κ<ω)] bean enumeration in V [G] su
h that m(e) 
on
entrates on κn for some n ≤ e.Ea
h measure in j[Measκ(κ<ω)] extends from M to M [G] sin
e 22κ is lessthan j(κ). Similarly, sin
e λ ≤ j(κ), these measures extend to M [G][H ]whenever H is (< λ)-generi
 over M [G]. Noti
e that sin
e M 
ontains H(λ)and Mω ⊆ M , any (< λ)-generi
 H over V [G] is in fa
t (< λ)-generi
 over
M [G] and M [G][H ] is ω-
losed in V [G][H ].De�ne the tree S to 
onsist of all (s, 〈α0 . . . , αn−1〉) su
h that:
s ∈ ωn

α0 < j(κ)+For all i < e < n: If m(e) 
on
entrates on j(T ∗)s and m(e) proje
ts to m(i),then αe < πm(i),m(e)(αi).We will show that S is a λ-absolute 
omplement for j(T ) in V [G]. Let Hbe (< λ)-generi
 over V [G] and x a real in V [G][H ]; we must show that in
V [G][H ], x ∈ p[j(T )] i� x /∈ p[S]. Note that sin
e M [G][H ] is ω-
losed in
V [G][H ], x belongs to M [G][H ].For ea
h (s, t) ∈ j(T ∗), 
onsider the measure Σ(s, t) 
on
entrating on T ∗

sgiven by: A ∈ Σ(s, t) i� t ∈ j(A). Suppose that (x, f) is a bran
h through32



j(T ∗) in V . Then Ult(V, 〈Σ(x ↾ n, f ↾ n) | n ∈ ω〉) is well-founded: Otherwise,we 
an 
hoose An ∈ Σ(x ↾ n, f ↾ n) and gn : An → Ord su
h that for ea
h n,
gn+1(y) < gn(y ↾ n) for y ∈ An+1. But then j(gn+1)(f ↾ n+ 1) < j(gn)(f ↾ n)for ea
h n, 
ontradi
tion. It follows that Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈ ω〉)is well-founded. The measures j(Σ(x ↾ n, f ↾ n)) lift fromM toM [G][H ] andtherefore we have the well-foundedness of Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈
ω〉) for any bran
h (x, f) through j(T ∗) in M [G][H ]; note that any bran
hthrough j(T ∗) in V [G][H ] in fa
t belongs toM [G][H ] as the latter is ω-
losedin V [G][H ].Suppose now that x ∈ p[j(T )] in V [G][H ]. Then by absoluteness x ∈
p[j(T )] in M [G][H ]. As T and T ∗ have the same proje
tion in any (< κ)-generi
 extension of V , it follows that j(T ) and j(T ∗) have the same pro-je
tion in any (< λ)-generi
 extension of M , and therefore x ∈ p[j(T ∗)] in
M [G][H ]. It follows that x /∈ p[S], as the existen
e of a bran
h through
Sx implies the ill-foundedness of Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈ ω〉), in
ontradi
tion to the above.Conversely, suppose that x /∈ p[j(T )] in V [G][H ]. Then x /∈ p[j(T ∗)]in V [G][H ] so there is a rank fun
tion f on T ∗

x . As x belongs to M [G][H ]it follows that f also belongs to M [G][H ]. For m(e) a measure 
on
entra-ting on some j(T ∗)x↾n, let αe equal [f ]m(e), the ordinal represented by fin Ult(M [G][H ], m(e)) (where m(e) has been 
anoni
ally lifted from M to
M [G][H ]). Then 〈αe | e ∈ ω〉 is an in�nite bran
h through Sx, as desired. 2Le
ture 19Strong absolutenessThe absoluteness prin
iples that we have 
onsidered so far refer ex
lu-sively to set-generi
 extensions. The Lévy-Shoen�eld absoluteness prin
iple,however, applies to arbitrary extensions. The strong absoluteness prin
ip-les dis
ussed below are in the tradition of Lévy-Shoen�eld and impose nogeneri
ity requirement on the extensions 
onsidered.By extension of V I shall mean a ZFC model V ∗ whi
h 
ontains V andhas the same ordinals as V . This is best formalised by regarding V as a
ountable transitive model of ZFC and allowing V ∗ to range over 
ountable33



transitive ZFC models whi
h 
ontain V and have the same ordinal height as
V .Lévy-Shoen�eld absoluteness. Suppose that ϕ is a Σ1 formula with real para-meters true in an extension of V . Then ϕ is true in V .Any 
onsistent generalisation of Lévy-Shoen�eld absoluteness must dealwith the following two obsta
les:Counterexample 1. There is a Σ1 formula with parameter from H(ω2) whi
hholds in some (set-generi
) extension V ∗ of V but not in V .Counterexample 2. There is a Σ1 formula with parameter from H((2ℵ0)+)whi
h holds in some (


 set-generi
) extension V ∗ of V but not in V .Counterexample 1 is witnessed by the formula �ωV

1 is 
ountable�. Coun-terexample 2 is witnessed by the formula �There is a real not in P(ω)V �.Let us say that a Σ1 absoluteness prin
iple is a prin
iple asserting theabsoluteness of 
ertain Σ1 formulas with 
ertain parameters with respe
t to
ertain extensions of V . Our 
ounterexamples imply that a 
onsistent Σ1absoluteness prin
iple must impose some restri
tion either on the 
hoi
e offormulas, the 
hoi
e of parameters, the 
hoi
e of extensions, or a 
ombinationof the three.I o�er three proposals. The �rst allows arbitrary parameters, at the 
ostof restri
ting the 
hoi
e of extensions. The se
ond allows arbitrary extensions,at the 
ost of restri
ting the allowable parameters. And the third weakensthe parameter restri
tions of the se
ond proposal, at the 
ost of restri
tingthe 
hoi
e of formulas in various ways.a. Σ1 absoluteness with arbitrary parameters.A �rst attempt to avoid Counterexample 1 is to require that V and V ∗have the same ω1. But Σ1 absoluteness with parameters from H(ω2) even for
ω1-preserving extensions is also in
onsistent: Let A be a stationary subset of
ω1. Then the formula whi
h asserts that A 
ontains a CUB subset is Σ1 andtrue in a 
ardinal-preserving (set-generi
) extension; therefore Σ1 absoluten-ess with parameters from H(ω2) for ω1-preserving extensions implies that A34




ontains a CUB subset. But there are disjoint stationary subsets of ω1, givingdisjoint CUB subsets of ω1, a 
ontradi
tion.Even requiring stationary-preservation at ω1 (i.e, that stationary subsetsof ω1 in V remain stationary in V ∗) results in in
onsisten
y:Theorem A. There exists an extension V ∗ of V whi
h is stationary-preservingat ω1 su
h that some Σ1 senten
e with parameters from H(ω2)
V true in V ∗is false in V .Proof. By a theorem of Beller-David there is an extension V ∗ with the same

ω1 as V 
ontaining a real R su
h that Lα[R] fails to satisfy ZFC for ea
hordinal α. Moreover, V ∗ is stationary-preserving at ω1. Now suppose thatthe Theorem fails. Then there is su
h a real R in V , as this property of R
an be expressed by a Σ1 senten
e with parameters R and ω1. In parti
ular,
ω1 is not ina

essible to reals. It is easy to see that the failure of the Theoremimplies that Σ1

3-absoluteness holds between V and its stationary-preservingat ω1 extensions. It then follows that ω1 is ina

essible to reals after all,
ontradi
tion. 2One 
ould 
ontinue to make further restri
tions on the extension V ∗, su
has stationary-preservation at ω1 together with full 
ardinal-preservation, inthe hope of a
hieving the 
onsisten
y of Σ1(H(ω2)) absoluteness (withoutimposing the requirement that V ∗ be a set-generi
 extension of V ). But wemust also re
kon with Counterexample 2.A possible solution is des
ribed by the following. I say that an extension
V ∗ of V strongly preserves H(κ) i� the H(κ) of V ∗ equals the H(κ) of V andall 
ardinals of V less than or equal to Card (H(κ)) = 2<κ remain 
ardinalsin V ∗.
Σ1 absoluteness with arbitrary parameters. Suppose that κ is an in�nite 
ar-dinal and a Σ1 formula ϕ with parameters from H(κ+) holds in an extension
V ∗ of V whi
h strongly preserves H(κ). Then ϕ holds in V .When κ is ω, this is Lévy-Shoen�eld absoluteness. When κ is ω1, thisasserts Σ1(H(ω2)) absoluteness for extensions whi
h do not add reals andwhi
h preserve 
ardinals up to 2ℵ0 . Note that in the presen
e of ∼ CH,this axiom does rule out the two standard set-for
ings for destroying thestationarity of a subset of ω1. 35



It is possible that a weaker restri
tion on the extension V ∗ will su�
e,provided we insist only on arbitrary ordinal parameters.
Σ1 absoluteness with arbitrary ordinal parameters. Suppose that ϕ is a Σ1 for-mula with ordinal parameters whi
h holds in a 
ardinal-preserving extensionof V . Then it holds in V .Counterexample 1 is avoided as we insist on 
ardinal-preservation. AndCounterexample 2 is avoided as we only allow ordinal parameters.b. Σ1 absoluteness for arbitrary extensions.Counterexamples 1 and 2 imply that to obtain a 
onsistent version ofabsoluteness for arbitrary Σ1 formulas with respe
t to arbitrary extensions,we must impose some restri
tion on our 
hoi
e of parameters. A suitablerestri
tion is perhaps provided by the following de�nition.De�nition. Let x belong to V and let V ∗ be an extension of V . I say that xis absolute between V and V ∗ i� there is some parameter-free formula whi
hde�nes x not only in V but also in V ∗.
Σ1 absoluteness for arbitrary extensions. Suppose that V ∗ is an extension of
V and ϕ is a Σ1 formula whose parameters are absolute between V and V ∗.Then if ϕ is true in V ∗ it is also true in V .Counterexample 1 is avoided as ωV

1 may fail to be absolute between V andextensions in whi
h it is 
ountable. Counterexample 2 is avoided as P(ω)Vmay fail to be absolute between V and extensions in whi
h new reals areadded.
. Cardinality, 
o�nality, CUB and powerset absoluteness prin
iples.Other forms of strong absoluteness result by onsidering spe
ial types of
Σ1 formulas. First I generalise our earlier notion of absolute parameter.De�nition. Suppose that x belongs to V , P is a subset of V and V ∗ is anextension of V . Then x is absolute relative to parameters in P between V and
V ∗ i� there is a formula with parameters from P whi
h de�nes x not only in
V , but also in V ∗. 36



For 
ardinality and 
o�nality we have the following absoluteness prin
ip-les.Cardinality absoluteness. Suppose that α is an ordinal, V ∗ is an extensionof V and α is absolute relative to bounded subsets of α between V and V ∗.Then if α is 
ollapsed (i.e., not a 
ardinal) in V ∗, it is also 
ollapsed in V .Co�nality Absoluteness. Suppose that α is an ordinal, V ∗ is an extension of
V and α is absolute relative to bounded subsets of α between V and V ∗.Then if α is singular in V ∗, it is also singular in V .For largeness in the sense of the CUB �lter we have:CUB absoluteness. Suppose that X is a subset of a regular 
ardinal κ, V ∗ isan extension of V and X is absolute relative to ordinals and bounded subsetsof κ between V and V ∗. If 
o�nalities at most κ are preserved between Vand V ∗ and X 
ontains a CUB subset in V ∗, then it 
ontains one in V .The following is a strong absoluteness prin
iple for the powerset operati-on.Powerset absoluteness. Suppose X is a subset of P (κ), κ an in�nite 
ardinal,
V ∗ is an extension of V and X is absolute relative to ordinals and subsetsof κ between V and V ∗. If 
ardinals at most κ are preserved between V and
V ∗ then the 
ardinality of X in V ∗ equals its 
ardinality in V .Le
ture 20The 
onsisten
y strength of strong absoluteness prin
iplesI do not know if any of the above prin
iples are provably 
onsistent relativeto large 
ardinals. In this subse
tion I provide some lower bounds on their
onsisten
y strength.Theorem B. Σ1 absoluteness with arbitrary parameters implies that the GCHfails at every in�nite 
ardinal, and for regular un
ountable κ, there is no κ-Suslin tree.Proof. Suppose that the GCH held at the in�nite 
ardinal κ. Choose S ⊆ κ+to be a fat-stationary subset of κ+ whi
h does not 
ontain a CUB subset. (S37



is fat-stationary i� S ∩ C 
ontains 
losed subsets of any ordertype less than
κ+, for ea
h CUB C ⊆ κ+.) The existen
e of su
h a set is guaranteed by aresult of Krueger. Then the for
ing P that adds a CUB subset to S using
losed subsets of S ordered by end-extension has 
ardinality κ+ and, usingthe fatness of S, is κ+-distributive. It follows thatH(κ+) is strongly preservedby P . But a CUB subset of S witnesses a Σ1 formula with parameter S nottrue in the ground model, in 
ontradi
tion to our hypothesis.Suppose that there were a κ-Suslin tree T for an un
ountable regular
ardinal κ. Then for
ing with this tree strongly preserves H(κ) and adds awitness to a Σ1 formula with parameter T not witnessed in the ground model,in 
ontradi
tion to our hypothesis. 2Corollary. Σ1 absoluteness with arbitrary parameters implies the 
onsisten
yof a measurable 
ardinal κ of Mit
hell order κ++.To study Σ1 absoluteness with arbitrary ordinal parameters we make useof the following result.Lemma. Suppose that there is no inner model with a measurable 
ardinal αof Mit
hell order α. Suppose that κ is a singular 
ardinal. Then there is afat-stationary S ⊆ κ+ whi
h is de�nable with parameter κ in Mit
hell's 
oremodel K for sequen
es of measures and does not 
ontain a CUB subset in
V .Corollary. The 
onsisten
y strength of Σ1 absoluteness with arbitrary ordinalparameters is at least that of a measurable 
ardinal κ of Mit
hell order κ.Proof. Assume Σ1 absoluteness with arbitrary ordinal parameters and thatthere is no inner model with a measurable 
ardinal α of Mit
hell order α.Let κ be a singular strong limit 
ardinal. By the previous lemma, there isa fat-stationary S ⊆ κ+ in K whi
h does not 
ontain a CUB subset. Thefor
ing P that adds a CUB subset to S using 
losed subsets of S orderedby end-extension is κ+-distributive and witnesses a new Σ1 formula withparameter S. But K is not 
hanged by this for
ing and therefore there is aformula with ordinal parameters whi
h de�nes S both in V and in a P -generi
extension. Thus to avoid a 
ounterexample to our absoluteness hypothesis,
P must 
ollapse a 
ardinal over V , whi
h is only possible if the GCH fails at
κ. This gives the 
onsisten
y of a measurable κ of Mit
hell order κ++. 238



Theorem C. Suppose that Σ1 absoluteness for arbitrary extensions holds.Then there is an inner model with a measurable 
ardinal α of Mit
hell order
α.Proof. If there is no inner model with a measurable 
ardinal α of Mit
hellorder α, then by the lemma, if κ denotes ℵω, there is a fat-stationary subset
S of κ+ whi
h is de�nable in K with parameter κ and does not 
ontain aCUB subset. Then there is a formula whi
h de�nes S not only in V but alsoin V [G], where G is generi
 for adding a CUB subset to S. This is a violationof our absoluteness hypothesis. 2Theorem D. Cardinal absoluteness implies that for ea
h in�nite 
ardinal κ,
κ+ is greater than (κ+ of HOD).Proof. If G is generi
 for the Lévy 
ollapse of κ+ to ω, then HOD is the samein V and in V [G], by the homogeneity of the for
ing. This 
ontradi
ts ourabsoluteness hypothesis. 2.Corollary. Cardinal absoluteness implies that there is an inner model with astrong 
ardinal, and, if there is a proper 
lass of subtle 
ardinals, there is aninner model with a Woodin 
ardinal.It is possible to extend the Corollary to obtain inner models with a proper
lass of Woodin 
ardinals 
ontaining any given set, under the assumption of
ardinal absoluteness and a proper 
lass of subtle 
ardinals. This is morethan enough to imply Proje
tive Determina
y.Theorem D also holds for 
o�nality absoluteness, as the latter implies
ardinality absoluteness. CUB and powerset absoluteness have at least the
onsisten
y strength of a measurable 
ardinal α of Mit
hell order α using theproof of Theorem C.
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