Absoluteness Course, Wintersemester 2004
Lectures 1 and 2
Introduction

This course will treat generalisations of the following classical result. For
an infinite cardinal x, H(x) denotes the set of sets whose transitive closure
has cardinality less than k.

Theorem 1. (Lévy Absoluteness) Suppose that ¢ is a ¥; formula with para-
meters from H(w;). If ¢ is true in some extension of V satisfying ZFC (for
example, in a set-generic extension of V') then ¢ is true in V.

An elementary fact is that for any uncountable cardinal x, H(k) is a
Y1-elementary submodel of V. Therefore:

Corollary 2. Suppose that W is an extension of V satisfying ZFC. Then
H(w;)V is a ¥i-elementary submodel of H(w;)".

What follows is an outline of the generalisations of Corollary 2 that we
will consider in this course. Many concepts will be mentioned in this outline
that will only later be defined, when we prove the mentioned results.

Definition. Suppose that P is a definable class of posets. A P-generic ex-
tenston is a set-generic extension of V' obtained by forcing with a poset in
P. Then ¥, (H(k))-absoluteness for P-forcing means that H (k)" is a ¥,-
elementary submodel of H (k)" whenever W is a P-generic extension of V.
We abbreviate this as Abs(3,(H(k)), P).

Thus Corollary 2 implies Abs(X; (H (w1)), set-forcing), i.e., Abs(3;(H (w1)), P)
where P = the class of all posets.

It follows that ¥s(H(wp)) formulas are persistent for set-generic exten-
sions of V, in the sense that if such a formula holds in some set-generic
extension then it holds in all larger set-generic extensions. Therefore it is
reasonable to consider Abs(Xs(H (wq)),P) for various forcing notions P.

Theorem 3. The following are equiconsistent:
1. Abs(Xs(H (wy)), set-forcing).



2. Abs(X2(H (wq)),wr-preserving set-forcing).

3. Abs(35(H (w1)), stationary-preserving (at wy) set-forcing).

4. Abs(Xo(H (w1)), proper set-forcing) and w; is inaccessible to reals.

5. There is a reflecting cardinal, i.e., a regular cardinal x such that H(x) is
Yo-elementary in V.

Theorem 4. Abs(3y(H (wy)), semiproper set-forcing) is consistent relative to
ZFC.

Theorem 5. The following are equiconsistent:
1. Abs(Xs(H (wy)), cee set-forcing) and wy is inaccessible to reals.
2. There is a Schrittesser cardinal.

It is reasonable to consider Abs(X3(H (wy)),P) provided one imposes the
hypothesis that ¥3(H(w;)) formulas persist for P-generic extensions. The
latter is equivalent to saying that Abs(Xy(H (w1)),P) holds in all P-generic
extensions, a form of “two-step absoluteness” for P-forcing. We consider next
some examples of this.

Theorem 6. The following are equivalent:

1. All set-generic extensions obey Yo(H (wq))-absoluteness for further set-
generic extensions.

2. All stationary-preserving at w; set-generic extensions obey Y.o(H (w1))-
absoluteness for further stationary-preserving at w; set-generic extensions.
3. Every set has a #.

Theorem 77 The following are equivalent:

1. All proper set-generic extensions obey Yo(H (w))-absoluteness for further
proper set-generic extensions.

2. Every set belongs to an inner model with a remarkable cardinal.

Theorem 87 The following are equivalent:

1. All cce set-generic extensions obey Yo(H (wy))-absoluteness for further ccc
set-generic extensions.

2. wy is weakly compact relative to reals.

There should be a version of Theorems 6-8 for semiproper forcing.

In light of Theorem 6, the correct context for 33(H (w;))-absoluteness for
set-generic extensions is ZFC + Every set has a #.
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Theorem 9. The following are equiconsistent:
1. 35(H (wq))-absoluteness for set-generic extensions and every set has a #.
2. There exists a reflecting cardinal and every set has a #.

There should be results analogous to Theorem 9 for semiproper, proper
and ccc.

¥4 (H (wy))-absoluteness for set-generic extensions is reasonable provided
Y4(H (wy)) formulas persist for set-generic extensions, i.e., provided that all
set-generic extensions obey Y3(H (w;))-absoluteness for further set-generic
extensions.

Theorem 107 The following are equivalent:

1. All set-generic extensions obey Y3(H (wi))-absoluteness for further set-
generic extensions.

2. Every set belong to an inner model with a strong cardinal.

Theorem 11. The following are equiconsistent:

1. ¥4(H (wy))-absoluteness and every set belongs to an inner model with a
strong cardinal.

2. There exists a reflecting cardinal and every set belongs to an inner model
with a strong cardinal.

To continue, one adds strong cardinals.

There should be appropriate versions of Theorems 10, 11 for semiproper,
proper and ccc.

We next consider absoluteness for H(ws). This is particularly interesting
due to its connections to the “bounded forcing axioms”.

Theorem 12. Abs(3; (H (ws)),wi-preserving set-forcing) is false.

Theorem 13. Abs(X;(H (w2)), cce set-forcing) is equivalent to Martin’s Axiom
at wq.

Theorem 14. The following are equiconsistent:
1. Abs(X%;(H (ws9)), proper set-forcing).

2. Abs(X(H (ws)), semiproper set-forcing).

3. There is a reflecting cardinal



Theorem 15. Abs(3 (H (ws2)), stationary-preserving at wy set-forcing) implies
that every set belongs to an inner model with a strong cardinal. The consi-
stency of Abs(X;(H (ws)), stationary-preserving at w; set-forcing) follows from
that of a proper class of Woodin cardinals.

Theorem 16. ¥;(H (w2))-absoluteness cannot hold in all ccc set-forcing ex-
tensions.

So it is not reasonable to look at ¥o(H (wq))-absoluteness.

Theorem 17. ¥, (H (w3))-absoluteness for ccc set-forcing extensions is equi-
valent to Martin’s Axiom at ws. But for proper set-forcing extensions it is
false. Also, for set-forcing extensions which are stationary-preserving at both
wi and wy it is false?

An appropriate form of X; (H (w3))-absoluteness for more than ccc forcing
is not known.

Absoluteness principles on H(w;) have no effect on the size of the conti-
nuum. However those on H(ws) do:

Theorem 18. ¥y (H (ws))-absoluteness for proper set-forcing implies 2% = N,.
Strong Absoluteness

Notice that Lévy absoluteness applies to arbitrary extensions, not just
set-generic ones. Are there strengthenings of Lévy absoluteness which also
apply to arbitrary extensions?

Theorem 19. Y5 ( H (wy))-absoluteness (and hence also X1 (H (ws))-absoluteness)
for (stationary-preserving at w;) class-forcing extensions is false.

A consistent possibility is to require absolute parameters. A class A is
absolute between V' and an extension W iff some formula without parameters

defines A both in V' and in W.
Conjecture. The following axiom is consistent relative to large cardinals:

Strong Absoluteness. Absoluteness holds for arbitrary extensions of V' for
Y, formulas with absolute class parameters: If a ¥; formula ¢ with class
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parameter A holds in an extension W of V' and A is absolute between V' and
W then ¢ holds in V.

Theorem 207 (x) implies the existence of an inner model with a Woodin
cardinal.

Lectures 3 and 4
Definitions and Proofs
We now begin the formal part of the course. Our first task is to prove:

Theorem 1. (Lévy Absoluteness) Suppose that ¢ is a ¥; formula with para-
meters from H (w;). Suppose that W is an outer model of V' (i.e., an extension
of V satisfying ZFC with same ordinals as V; for example, a set-generic ex-
tension of V'). Then if ¢ is true in W it is also true in V.

Proof. The idea is to associate to each ¥; formula ¢ with parameter z €
H(w) a tree T, of size w}" such that in both V and W, ¢ is true iff 7,, has
an infinite branch (i.e., iff 7, is not well-founded). This reduces Lévy absolu-
teness to the absoluteness of well-foundedness of trees, a simple consequence
of the ZFC axioms.

To obtain the tree T, we proceed as follows. For simplicity, assume that
x does not exist, i.e., that ¢ has no parameter. (The proof we give will
“relativise” to the parameter z, so this is not a serious restriction.) As ¢ is
Y1 it is equivalent to

There exists a transitive set ¢ such that ¢ F ¢.
In fact, ¢ is equivalent to
There exists a countable transitive set ¢ such that ¢ F ¢,

since if u is an arbitrary transitive set satisfying ¢, we can replace u by the
transitive collapse of a countable elementary submodel of u, which will then
be a countable transitive model of ¢.

Now for each countable transitive set ¢, the structure (¢, €) is isomorphic to
a structure (w, E') where E is a binary relation on w. Conversely, by the Mo-
stowski Collapse Theorem, if (w, F') satisfies the Axiom of Extensionality and



is well-founded, then it is isomorphic to (¢, €) for some countable transitive
t. Therefore ¢ is equivalent to

There exists an (w, ') satisfying both ¢ and the Axiom of Extensionsality
which is well-founded.

Let 1) be the conjunction of ¢ with the Axiom of Extensionality. Write ¢ in
prenex normal form, for example, as V3xoVrz3Iayy (2, ..., x4), where v is
quantifier-free. Then (w, E) satisfies 1 iff there exist Skolem functions f; :
w — w, f13: wxw — wsuch that (w, F) E Vo Vasy(zy, fi(x), s, fis(z1, 23))
the latter being a universal formula.

We now describe a tree 7" with the property that 7" has an infinite
branch iff some (w, F), possibly ill-founded, satisfies both ¢ and the Axi-
om of Extensionality. A node (element) of 7" on level n is a finite structure
(s,e) where e is a binary relation on s and s is a finite set of natural num-
bers containing n = {0,1,...,n — 1}, together with functions f; : n — s,
Jis i nXmn — ssuch that s = Ran f{ U Ran f73 and for all 21,23 < n,
(s,e) F (w1, fi(w1), 23, fi3(21,23)). When extending a node, one increases
n, enlarges the structure (s,e) and extends the functions f7, f7;. Then an
infinite branch through this tree produces a model (w, E) of 1, i.e., of ¢ to-
gether with the Axiom of Extensionality. Conversely, if 1) has a model then
this tree will have an infinite branch.

We need to modify 7" to a tree 7" whose infinite branches correspond to
well-founded models (w, E) of 1. A node of T' consists of (s,e) and f}, f}3
as above, together with a function r : s — w]” with the property that
if the pair (m,n) belongs to e, then r(m) < r(n). Then an infinite branch
through T gives rise to a model (w, E') of ¢ together with a “ranking function”
R : w — w; with the property that (m,n) € E implies R(m) < R(n); it
follows that the model (w, F) must be well-founded. Conversely, if 1) has
a countable well-founded model in W then the tree 7" will have an infinite
branch, since we can choose a ranking function for that model with values
less than wV.

So the truth of ¢ is equivalent to the existence of an infinite branch
through 7', and this equivalence holds not only in V', but also in W. If T
has an infinite branch in V' then of course it also has an infinite branch in
W, since W contains V. Conversely, suppose that 7" has no infinite branch



in V. Then since V satisfies ZFC, in V' there is a “ranking function” G on T,
i.e., a function G from the nodes of T into Ord such that if a is a node of T’
extending the node b of 7', then G(a) < G(b). As the function G also belongs
to W, it follows that T has no infinite branch in W. Therefore we have:

@ is true in V' iff

T has an infinite branch in V iff
T has an infinite branch in W iff
@ is true in W,

as desired. O

Corollary 2. Suppose that W is an extension of V satsifying ZFC. Then
H(w;)V is a ¥i-elementary submodel of H(w;)".

Proof. Suppose that a ; formula with parameters from H(w;)" is true in
H(w;)W. Then it is also true in W and therefore by Lévy absoluteness, in
V. Therefore we need only show that H(w;)" is ¥j-elementary in V. But if
a ¥; formula with parameters from H(w;)Y is true in V, it is also true in a
countable Yi-elementary submodel M of V, in the transitive collapse T' of
M and therefore also in H(w;)Y, since T is a transitive submodel of H (w;)Y.
O

It follows that >(H(w;)) formulas are persistent, in the sense that if
V. C W are models of ZFC with the same ordinals then any Ys(H (w;))
formula true in V is also true in W. For this reason, it is natural to consider
Abs(X2(H (wq),P), for various set-forcing notions P, our next topic.

We first prove

Theorem 3.1. The following are equiconsistent:

1. Abs(X2(H (w1)), set-forcing).

2. There exists a reflecting cardinal, i.e., a regular cardinal s such that H (k)
is Yo-elementary in V.

Proof. First suppose that x is Yo-reflecting, and we show that V[G] satisfies
Abs(2s(H (wy)), set-forcing), where G is generic over V for Coll(w, < k), the
forcing that with finite conditions collapses every ordinal less than x to w.
A condition in Coll(w, < k) is a function p with domain a finite subset of



w x K such that p(n,a) < a for each (n,a) € Dom(p). For any & < kK
let Coll(w, < k) denote the set of conditions in Coll(w, < k) with domain
contained in w X R.

Lemma 3.1.1. (a) Suppose that & is a limit ordinal less than x and X is
a maximal antichain in Coll(w, < &). Then X is a maximal antichain in
Coll(w, < k).

(b) Coll(w, < k) has the k-cc, i.e., antichains in this forcing have size less
than .

(c) If G is Coll(w, < k)-generic then G N Coll(w, < &) is Coll(w, < k)-generic
for each limit ordinal kK < k.

(d) If z is a real in V[G], where G is Coll(w, < k)-generic over V, then z
belongs to V|G N Coll(w, < k)] for some limit & < k.

Proof. (a) It suffices to show that every condition in Coll(w, < k) is compa-
tible with some element of X. Given a condition p, let p be p restricted to
Dom(p) N (w x &). Then p belongs to Coll(w, < k) and therefore is compatible
with some ¢ in X. But then p is also compatible with g, since ¢ and p — p
have disjoint domains.

(b) This follows from (a), since if X is a maximal antichain in Coll(w, < k),
a closure argument shows that X = X N Coll(w, < &) is a maximal antichain
in Coll(w, < %) for some limit £ < k.

(c) This also follows from (a).

(d) Let x = 0% (i.e., o is a name for z in V[G]). For each n, the set of conditi-
ons in Coll(w, < k) which decide the sentence “n € ¢” is dense. Note that any
maximal antichain in a dense subordering of P is also a maximal antichain
in P. For each n let X,, be a maximal antichain of conditions which decide
“n € 0”. Then each X,, is a maximal antichain in P and x is determined by
how G intersects the X,,’s. By (b), there is a limit & < x such that each X,
is contained in Coll(w, < k), and therefore = belongs to V[G N Coll(w, < &)].
O (Lemma 3.1.1)

Now suppose that ¢ is a ¥y (H (w;)) formula with parameter p € H(w;)"¢
which is true in some set-generic extension of V[G]. Note that any 3o (H (wy))
formula is also a 3, formula, as the relation “z € H(w;)” is ;. First assume
that p belongs to V; since the transitive closure of p is countable in V]G],
p in fact belongs to H(x)". Then V satisfies the following sentence with
parameter p:



There exists a set-forcing P such that P IF ¢.

As ¢ is Yo, the relation “P IF ¢” is also 5. As k is reflecting, the above
sentence is true in H (k). Let P be a set-forcing in H(x) which forces ¢.
Then since k is strongly inaccessible, the power set of P has size less than
in V' and therefore is countable in V[G]. It follows that in V[G] there exists
a P-generic g over V, and since P forces ¢, we get V]g] E . Since ¢ is
Yo(H(w1)), by persistence it is also true in V|G|, as desired.

If p is not 0, then we argue as follows. As p belongs to H(w;)"[“, it
can be coded by a real in V[G]. By Lemma 3.1.1 (d), p belongs to V|G N
Coll(w, < &)] for some limit & < k. Now the forcing Coll(w, < k) factors as
Coll(< &) x Coll(> &), and therefore V[G] = V[G(< R)|[G(> E)], where
G(> R) is P(> R)-generic over V[G(< ). Now repeat the above argument
using the ground model V[G(< k), which contains the parameter p, and its
P(> k)-generic extension V[G(< R)][G(> k)| = VI[G].

Lectures 5 and 6
We complete the proof of

Theorem 3.1. The following are equiconsistent:

1. Abs(35(H (w)), set-forcing).

2. There exists a reflecting cardinal, i.e., a regular cardinal s such that H (k)
is Yo-elementary in V.

Proof. It remains to show that the consistency of 1 implies that of 2. We
show that if Abs(3s(H (w;)), set-forcing) holds, then xk = wy is a reflecting
cardinal in L. Suppose that L F ¢, where ¢ is a 3, formula with parameters
from H(x)Y = L.. We must show that ¢ is true in L,. Since ¢ is true in L,
by reflection it is also true in H ()Y = Ly for some L-cardinal §. There is
a set-generic extension of V' in which @ is countable. Therefore in some set-
generic extension of V' the following Yo(H (w)) formula (with parameters
from L, C H(w;)Y) is true:

H(wy) E There exists an ordinal 6 such that 6 is a cardinal of L and Ly F .

By Abs(23(H (wy)), set-forcing), the above formula is also true in V. Therefo-

re there is an ordinal 6 less than w{” = & such that Ly F ¢ and H(w,)" F 0 is



an L-cardinal. Since H(w;)" is ¥j-elementary in V', @ really is an L-cardinal,
and therefore Ly is ¥q-elementary in L,. As ¢ is Yo, it follows that L, also
satisfies ¢, as desired. O

Iterated Set-Forcing and Properness

We now consider Abs(3y(H (wy)),P) for various types of set-forcing P.
Some natural choices for P are the following

cce C Proper C Stationary-preserving at w; C wi-preserving C Set-forcing

A forcing P is stationary-preserving at wy iff whenever X C wy is stationary,
it remains stationary in each P-generic extension. The definition of proper
is more complex, and is closely related to the method of forcing iteration,
which we describe next.

First we consider finite-support iteration.

Definition. Let « be a nonzero ordinal. P, is an iteration of length o with
finite support iff it is a set of a-sequences with the following properties:

(i) If o = 1 then for some forcing notion Qo = Qy, P, is the set of all sequences
{p(0)) 01;2 length 1, where p(0) € Qo. And (p(0)) < (g(0)) iff p(0) < ¢(0),
17 = (190),

(i) If o = B+ 1 then P3 = {p | B | p € P.} is an iteration of length 3 and
there is some Pg-name Qs such that 177 |- Q4 is a forcing notion and:

p € Py iff p [ B € Ps, p(B) is a Pg-name of rank less than Rank Qs and
17 1 p(B) € Q.

p<qginPiffp [ B<q[Bin Pgandp | B I p(B) < q(B), and 17 is
defined by 17(y) = 197 for all v < 3.

(iii) If o is a limit ordinal then for all 3 < a, Ps ={p | B | p € P,} is an
iteration of length § and:

p € P, iff

p | B € Psforall < aand 175 I p(3) = 195 for all but finitely many
0 < a.

Also: p<qin P, iff p| 8 <q | Bin Ps for all § < a and 17 is defined by
172(8) = 195 for all 8 < «.

Notation. <z denotes the ordering of Pjg, I3 denotes the forcing relation of
Ps and IF5 ¢ abbreviates 177 |5 .
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Theorem 3.2.1. Let P, result from the iteration with finite support of Qs |
B < a). IflF3 Qg is ccc for each § < a then P, is ccc.

A nice application of finite support iteration is to Suslin’s Problem. Suslin
asked whether there is a complete, dense linear ordering without endpoints,
without an uncountable set of pairwise disjoint intervals and not isomorphic
to the real line. It turned out the answer is Yes in L, but the answer is No
in an extension of L obtainable through iteration with finite support.

An equivalent version of Suslin’s question is the following: Is there a Suslin
Tree? The latter is an uncountable partially-ordered set (7', <r) such that
the predecessors of each element of 7" are well-ordered by <7 and (7, <r)
has no uncountable chain or antichain.

Notice that if (7', <r) is a Suslin tree then (7', >7) is a partial-ordering
and therefore can be used as a forcing notion. If T" is a Suslin tree with the
property that each ¢ € T has uncountably many extensions in 7', then forcing
with 7" adds an N;-branch through 7" and therefore T will not be Suslin in
the generic extension.

Theorem 3.2.2. In L, there is an iteration with finite support P of length Ny
such that if G is P-generic over L then in L[G] there are no Suslin trees.

Iterations with countable support are defined just like iterations with finite
support, but with the condition at limit stages o given as follows:

pEPaiﬂ’p[ﬁgPﬁforallﬁ<aand
172 1 p(B) = 19 for all but countably many 3 < a.

This type of iteration is needed when one wishes to use forcings which are
not ccc. Often one performs an iteration of length No, using forcings of size
N;. To show that cardinals above N; are preserved one uses:

Proposition 3.2.3. Let P be a countable support iteration of length N, such
that for § < Ny, P | # has the Ny-cc. Then P has the Ny-cc.

How does one show that N, is preserved in a countable support iteration?

One way is to assume that the forcings used are countably closed (i.e., every
countable descending sequence of conditions has a lower bound). However
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this is too restrictive for applications. Shelah isolated a useful condition on
the forcings used in the iteration, called properness, which guarantees pre-
servation of Ny, is maintained through countable support iteration and has
many applications.

Definition. P is proper iff player I1 has a winning strategy in the following
game: Player I begins by selecting a condition p and choosing a name ¢ for
an ordinal. Player 11 chooses an ordinal 3,. At the n-th move, n > 0, I plays
a name ¢, for an ordinal and I plays an ordinal (3,,. Now /] wins the game
iff for some ¢ < p :

(*) q IF For all n, &, equals §j for some k.

Notice that if /1 has a winning strategy in the above game, then every
countable set of ordinals in a P-generic extension of V' is a subset of a set of
ordinals which is countable in V. Thus properness implies that N; is preser-
ved. It is not difficult to show that the same definition of properness reuslts
if we modify the above game so as to allow player I to play countable sets
of ordinals rather than single ordinals (where 77 wins iff some ¢ < p forces
that each ordinal name played by I belongs to the union of the countable
sets of ordinals played by IT).

Proposition 3.2.4. The following are equivalent:

1. P is proper.

2. For any uncountable r, every stationary A C P, (k) remains stationary
after forcing with P.

3. For k greater than the cardinality of the power set of P, there are CUB-
many countable M < H (k) such that any p € M can be extended to ¢ € P
which is (P, M)-generic: If D € M is dense on P then ¢ forces the generic to
intersect D N M.

It is easy to see that any ccc forcing and any countably closed forcing is
proper.

Theorem 3.2.5. Let P, be a countable support iteration of length v of Qﬁ,
B < «y such that for every 8 <, IFg Qg is proper. Then P, is proper.

A nice application of countable support iteration is to prove the consi-
stency of the Borel Conjecture. Let X be a subset of [0,1]. X has strong
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measure 0 iff for every sequence (¢, | n € w) of positive reals there exists a
sequence (I, | n € w) of intervals with length I, <'¢, such that X C |, I,.
Borel conjectured that strong measure 0 sets are in fact countable. This con-
tradicts CH, but Laver proved the consistency of Borel’s Conjecture using a
countable support iteration of Laver forcing.

Laver forcing is defined as follows. A set p C w<¥ is a tree iff it is closed
under initial segments. A tree p is a Laver tree iff for some s € p (called the
stem of p):

1. For all t € p either t C s or s C t.
2. For all t € p extending s the set S(t) = {a | txa € p} (the set of successors
of t in p) is infinite.

Laver forcing consists of all Laver trees, partially ordered by inclusion. If G
is generic then f = (J{s | s is the stem of some p € G} is a function from w
into w, a Laver real. Laver forcing is neither ccc nor countably closed.

By Proposition 3.2.3, if we iterate Laver forcing with countable support
for Ny steps over L, we will have the Ny-cc and therefore preserve all cardinals
greater than X;. To show that this iteration preserves Ny, it suffices to show

Lemma 3.2.6. Laver forcing is proper.

Proof. Define the relations <,, as follows. Consider a canonical enumeration
of w<* in which s appears before ¢ when s C t and in which s x a appears
before sx(a+1) for a € w. If pis a Laver tree then the part of p above the stem
is isomorphic to w<* and so we have a canonical enumeration (s? | i € w) of
it, where sj is the stem of p. Note that if ¢ < p and s? = s?, then n < m.
We define:

q <, p iff p and ¢ have the same stem and s¥ = 5! for all i < n.

It is easy to show that if pg >¢ p1 >1 p2 =2 ... then p = ﬂnpn is a Laver
tree, called the fusion of the fusion sequence (p, | n € w).

Fact. If pIF & € Ord, m € w then there are ¢ <,,, p and a countable A C Ord
such that ¢ IF & € A.
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Proof of Fact. We assume that m = 0, as the proof for general m is almost
the same. If p is a Laver tree, n € w, ¢ < p and the stem t of ¢ is maximal
among {sf, ..., st} then

r=qU{uep|lugtandtZ u}

is a Laver tree <,, p, called the n-amalgamation of q into p. This has the
obvious generalisation to the amalgamation of {qi,...,qx} into p when the
¢; extend p and their stems are all the maximal nodes among {s{,..., st}
(for a uniquely determined n).

We construct a fusion sequence (p,, | n € w) with py = p and finite sets A,
so that the fusion of this sequence forces & € (J, A,. At stage n we already
have p,,. Let ¢y, ..., be all the maximal nodes among s5", ..., s?». For each
i€ {1,...,k} if there exists ¢; < p, with stem ¢; and an ordinal o/, so that
g IFa= ail then we choose such ¢; and afl. Let A,, be the collection of all
the af chosen and let p,,; be the amalgamation of {qi, ..., g} into p,. (If ¢
did not exist, then we take it to be the collection of nodes in p, compatible
with ¢;.) We have p, 11 <, pn-

Let ps be the fusion of the p,’s and A =, A,,. To prove that p., IF & €
A, let ¢ < poo. There are ¢ < ¢ and a € Ord such that ¢ IF & = a. Let n
be large enough so that the stem of g is among K = {sb", ..., sE"}. There is
t € g that is a maximal node in K and therefore one of the nodes considered
at stage n, say t = t;. Let r consist of those nodes of ¢ which are compatible
with ¢. As r and « satisfy the requirements for choosing ¢; in the definition
of pn+1 we indeed have chosen ¢; and o,. Because r < ¢; it must be the case
that a = o and so r IF & € A. Thus each ¢ < p,, has an extension r such
that r I & € A. Therefore p., I & € A. This proves the Fact.

Now we can show that /7 wins the proper game for Laver forcing (in the
version where I plays a condition p and names for single ordinals, I1 plays
countable sets of ordinals and /1 wins iff there is ¢ < p which forces all the
names to be in the union of the sets or ordinals played). At the start of the
game let I select py and the ordinal name ¢y. By the Fact there is p; <g po
and a countable By such that p; IF & € By. At the nth move, when [ plays
&, there are p,.1 <, p, and a countable set B,, with p,; IF &, € B,,. Then
the fusion of the p,,’s verifies that I/ wins the game. O

Laver proves the consistency of Borel’s Conjecture by showing: If GCH
holds in V and X is an uncountable set of reals in V' then X does not have
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strong measure 0 in V[G] where G is generic over V' for the countable support
Ny-iteration of Laver forcing.

Lectures 7 and 8
We now return to the study of absoluteness.
Theorem 3.2. Abs(X2(H (w1)), Proper) is consistent relative to ZFC.

Proof. By a proper w;-iteration with countable support (P; | i < w;), we can
produce a generic extension L[(G; | i < wq)] of L which satisfies absoluten-
ess for 3y(H (wq)) formulas with parameters from L with respect to further
proper set-forcing extensions. This is possible as there are only w; reals in L
and properness is preserved by countable support iteration. We can further
guarantee that for each i < wq, L|G;] = L[X|] for some X; C wy: At stage
1, first force to guarantee absoluteness for some formula with a constructible
parameter, and then force with the countably-closed (and therefore proper)
forcing that collapses the cardinality of this forcing to w; using countable
conditions. The result is a model of the form L[(X; | i < wy)] with X; C w;
for each i, satisfying absoluteness for 5(H (w;)) formulas with parameters
from L with respect to further proper extensions. By dove-tailing, we can
in fact ensure absoluteness for Yo(H (w;)) formulas with parameters from
Ui, LIG:] with respect to further proper extensions.

Claim. Every real in L[(X; | ¢ < wy)] belongs to L[(X; | ¢ < j)] for some
j < Wwi.

Proof of Claim: If R is a real in L[(X; | i« < w;)] then R belongs to a
countable, sufficiently elementary submodel M of L[(X; | i < wy)], as well as
to the transitive collapse M of M. But M is of the form L,[(X; N3 |i < B)]
where 3 is the w; of M. It follows that R belongs to L[(X; | i < 3)], proving
the Claim.

Thus L[{X; | i < wq)] is a model of Abs(¥s(H (wy)), Proper), as desired.
O

Notice that in the model of the previous result, w; is the same as wi. The

next result implies that if wlL[R] is collapsed for each real R, then ¥5(H (w1))
absoluteness for proper set-forcing extensions is as strong (in terms of consi-
stency) as for arbitrary set-forcing extensions.
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Theorem 3.3. The following are equiconsistent:

1. Abs(X2(H (w)), Proper) holds and w; is inaccessible to reals (i.e., wlL[R] is
countable for each real R).

2. There exists a reflecting cardinal.

Proof. The consistency of 2 implies that of 1, as by Theorem 3.1 it even
implies the consistency of 3, (H (w))-absoluteness for arbitrary set-forcings.

For the converse we shall need some facts about 07. The existence of
07 is equivalent to the statement that the uncountable cardinals form a
class of order indiscernibles in L: For any formula ¢(z1,...,x,), L satisfies
©(K1,...,ky) for some increasing n-tuple k; < --- < K, of uncountable
cardinals iff L satisfies (K1, ..., K,) for all such increasing n-tuples. This
implies that all uncountable cardinals are reflecting, Mahlo and much more
in L. The existence of 0% can also be characterised in terms of a relationship
between the cardinals of V' and those of L:

Theorem 3.3.1. (a) Suppose that 0% exists. Then for every cardinal x, K+ of
L is less than ™. (b) Conversely, if k™ of L is less than x* for some singular
cardinal &, then 0% exists.

Assume now Abs(35(H (wy)), Proper) and w; inaccessible to reals. We
shall show that either w; is Mahlo in L (i.e., if the set of countable L-
inaccessibles is stationary in L) or w; is reflecting in L. This proves the
Theorem: If wy is Mahlo in L, then by the its inaccessibility in L, L, is a
model of ZFC. For the same reason, the set {« | &« < k and L, < L} is a clo-
sed unbounded subset of x. Since w; is Mahlo in L there is an L-inaccessible
a < k in this set, and for any such «, L, F « is reflecting.

So assume that w; is not Mahlo in L (and therefore that 0% does not
exist). We will show that w is reflecting in L.

To show that w; is reflecting in L it suffices to show: If z belongs to L,,,,
¢ is a formula and for some L-cardinal A > wq, L) F ¢(x) then there is such
a A < wp with € L. For, given this, if ¢ is a >y formula with parameter
x € L, then Ly F ¢(x) for some L-cardinal A and therefore by assumption
for some such A < wy; it follows that L,, F ¢(z), as whenever Ay < A are
L-cardinals, any ¥, formula with parameters from L), which is true in L),
is also true in Ly, .
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The proof proceeds in three steps:

Step 1. By a countably-closed forcing we produce A C w; such that every
subset of w; belongs to L[A] and if L,[A], @ > w; is a model of ZFC—Power,
then L,[A] E There is an L-cardinal A such that L, satisfies ().

Step 2. By a further proper forcing, we produce A* C wy such that if L,[A*Ny]
is any model of ZFC—Power satisfying v = wy, then L,[A* N 4] E There is
an L-cardinal A such that L, satisfies ¢(z).

Step 3. By a further ccc forcing, we produce a real R such that for all «, if
L,|R] is a model of ZFC—Power in which “w; exists”, then L,[R] F There is
an L-cardinal X such that L, satisfies ¢(x).

This will complete the proof: The latter condition on the real R is unchan-
ged if we restrict to countable «, by reflection. Therefore this condition is
equivalent to a Il (H (wp)) condition, and by Abs(Xs(H (w1)), Proper) holds
for some real R in V. By our assumption that w; is inaccessible to reals,
L, [R] satisfies “w; exists” and therefore L, [R] satisfies that there is an L-
cardinal A such that Ly F ¢(z). Then X really is an L-cardinal and therefore
we have completed the proof that w, is reflecting in L.

Now we turn to the proofs of Steps 1, 2 and 3.
Lectures 9 and 10
Now we turn to the proofs of Steps 1, 2 and 3.

Proof of Step 1. Choose an L-cardinal A such that L, F ¢(z). Let § > X be
a singular strong limit cardinal of uncountable cofinality. Since 0% does not
exist, we have 6+ = (6+ of L) and 2° = §*.

Now collapse 0 to w; using countable conditions: Conditions in Coll(wy, d)
are functions p from a countable ordinal into J, ordered by extension. As there
are only ¢ countable subsets of 9, this forcing has cardinality 6 and therefore
preserves cardinals greater than 0. It follows that 6% of L is the ws of the
extension. CH holds in L[Ag] as we have collapsed 2% < § to w; without
adding reals. Also, each subset of w; added by this forcing has a name of the
form {(&,p) | p € Xa, @ < wi}, where each X, is a subset of the forcing; as
there are only 2° = 6% such names, it follows that 2! = w, in the extension.
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Let G be the generic function added by Coll(w;,d) and define Ay C wy
by a € Ag iff g(ap) < g(a1), where oo = {ap, 1) is a pairing function on w;.
Then in every model of ZEC—Power of the form L,[Aq], @ > wy, there is a
well-ordering of w; of length 0 and therefore we have L,[A¢] F There is an
L-cardinal X such that L, satisfies p(x). [t remains to guarantee that every
subset of w; belong to L[Ay].

In V[Ao] we have wy = (67)L and 21 = w,. In this model let B C wy
code all subsets of w;. We code B by A; C w; via a countably closed almost
disjoint forcing: In L[A] choose (b | f < w2) to be distinct subsets of w;. We
can assume that these sets are almost disjoint, in the sense that if Gy # 3,
then bg, and bg, have countable intersection. Conditions in the coding of B by
A; are pairs (p, p*), where p is a countable subset of w; and p* is a countable
subset of wsy, ordered by:

(p,p*) < (q,q") iff p end-extends ¢, p* contains ¢* and p — ¢ is disjoint from
b, for a« € BNgq*.

This forcing is countably closed, has the wy-cc and therefore preserves car-
dinals. Also if A; is the union of the first components of conditions in the
generic, then we have:

a € B iff A; is almost disjoint from b,

and therefore B belongs to L[A;]. As the generic for this forcing is entirely
determined by the set Aj, it follows that every subset of w; in V[Ag][A]
belongs to L[Ag|[A;]. So the desired set satisfying the requirement of Step 1
s A={2a|ac A} U{2a+1]|ac A}

Proof of Step 2. We produce A* using the following forcing. P consists of all
p:v(p) — 2, v(p) < wi, such that:

(x) For all v < ~(p) and all «, if L,[AN~,p [ 7] is a model of ZEC—Power
where a > 7 and y is the wy of L,[AN~,p [ 7] then L,[AN~,p [ 7] E There
is an L-cardinal X\ such that ¢(x) holds in L.

A P-generic adds a function F' : w; — 2 such that A* = {20 | g € A} U
{26+ 1| F(B) = 1} satisfies Step 2, since this is guaranteed for countable
by the definition of P and for 7 = w; by Step 1. It remains to show:

Lemma 3.3.2. P is proper.
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Proof of Lemma. It suffices to show that for CUB many countable N <
L,,[4], each condition p in N can be extended to a condition ¢ such that ¢
forces the generic to intersect D N N whenever D is a dense set in N. We
take all countable N < L,,[A] which have A and x as elements. Suppose that
p belongs to N and let N be isomorphic to N = Lg[A N §], where ¢ is the
w; of N. Now N contains a witness C' to the non-Mahloness of w; in L, and
since C'Nd is unbounded in ¢, it follows that ¢ belongs to C' and is therefore
singular in L. Therefore 3 is not an L-cardinal. Let y be the least ordinal so
that 3 is collapsed in L.

We shall build ¢ to be an extension of p of length §, as the union of
conditions of length less than §. (x) holds for ¢ when 7 of (k) is less than ¢
due to the fact that ¢ is the union of conditions of length less than 4. (x) holds
for ¢ when 7 of (%) is equal to § and « of (x) is at most [3, by the elementarity
of N in L,,[A]. (%) holds for ¢ when « of (%) is equal to 0 and « of (x) is
between 3 and p, as in this case any L-cardinal of Lg is also an L-cardinal of
L,. Thus it suffices to build ¢ so that § is collapsed in L,[A N, q], for then
(%) is vacuous when 7 of (x) is equal to § and « of (x) is at least .

As (3 is collapsed in L,[ANd] and we can assume that J is not, we can write
Lg[A N 6] as the union of a continuous chain (M; | ¢ < 0) of ¥j-elementary
submodels of Lg[A N 6], where each M; is countable in L,[A N J] and the
chain itself belongs to L,[A N d]. Let C be the set of intersections of the
models of this chain with §, a CUB subset of §. We define an w-sequence
p = po > p1 > --- of conditions below p such that each p, belongs to N,
each dense set in N is forced by some p,, to intersect the generic in N and if
¢ is the union of the p,’s, then {n € C'| ¢(n) = 1} is a cofinal subset of C' of
ordertype w. Then ¢ is collapsed in L,[A N4, g|, as desired.

To define the p,,’s, enumerate the dense D € N in an w-sequence (D, |
n € w) and choose a cofinal subset C of C' of ordertype w. Inductively, choose
pn as follows: If p,, is defined then first extend p,, at the next w ordinals to
code some M; N§ € Cy, where both D,, and this extension belong to M.
Then extend further to length M; N ¢, always assigning the value 0. Finally,
choose p, 1 to assign the value 1 at M; N and belong to D, N M; ;. O
(Lemma 3.3.2)

Proof of Step 3. Now we code A by a real R. As w; is not Mahlo in L, there

is a CUB C C wy, C € L, consisting of L-singulars. Let (a; | i < w;) be
the increasing enumeration of C'U {0} and for each ¢ let R; be a real coding
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the countable ordinal ;. Then if we define B to be {a; +n | i < w; and
n € R;}, we have: o countable — « countable in L[B N «]. Using this, we
choose distinct reals R,, a < w; so that R, can be defined uniformly in
L[B N a]. We may assume that the R,’s are almost disjoint (mod finite).
Now use these reals to code B, A* by a real R using a ccc almost disjoint
coding: A condition is a pair (p, p*) where p is a finite subset of w and p* is
a finite subset of wq, ordered by

(p,p*) < (q,q*) iff p end-extends ¢, p* contains ¢* and p — ¢ is disjoint from
Ry, when o € BN ¢* and disjoint from Ry, when o € A* N g*.

If R is the union of the first components of the generic, then R is almost
disjoint from Ry, iff @ € B and is almost disjoint from Ry, iff a € A*.
The forcing is ccc and therefore preserves cardinals. Finally, as A* N wlL“[R]
is definable in L,[R] for each o < wy, R fulfills the condition of Step 3. O

(Theorem 3.3)
Lecture 11

We have seen that 3o (H (w;)) absoluteness for proper forcings is consistent
relative to ZFC, but in the presence of the additional assumption that w; is
inaccessible to reals, it has the consistency strength of a reflecting cardinal.
If “proper” is weakened to “semiproper”, the situation is the same, using a
modification of the proof of Theorem 3.2.

A forcing P is stationary-preserving (at wi) iff stationary subsets of w;
remain stationary in P-generic extensions.

Theorem 3.4. Suppose that Abs(Xs(H (wy)), stationary-preserving set-forcing)
holds. Then w; is inaccessible to reals.

Corollary 3.5. Abs(X2(H (w)), stationary-preserving set-forcing) is equicon-
sistent with the existence of a reflecting cardinal.

Proof of Theorem 3.4. We first prove:

Lemma 3.4.1. If 0% does not exist then every set of ordinals is constructible
from a real in a stationary-preserving set-forcing extension.
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Proof. As in Step 1 of the proof of Theorem 3.3, we can produce A C w;
by a countably-closed forcing so that in the extension H(ws) = L, [A] and
the given set of ordinals belongs to H(ws). Let P be the “reshaping forcing”,
whose conditions are p : |p| — 2, |p| < w; such that for all o < |p|, a is
countable in L[AN «a,p [ a]. We will show that P is stationary-preserving.
Assuming this, let G be P-generic and F' : w; — 2 the union of the conditions
in G. Using F', we can choose a sequence (R, | & < wi) of distinct reals such
that R, is definable uniformly in L[ANa, F' | «| (by taking R, to be the least
real in L[ANa, F' | o] distinct from the Rg, # < ). Now as in Step 3 of the
proof of Theorem 3.3, we can code A, G by a real via a ccc forcing, resulting
in a stationary-preserving extension in which the given set of ordinals is
constructible from a real, as desired.

Now we show that P is stationary-preserving. Given p € P, a stationary
X C w; and a name o for a CUB subset of wy, let C' be a CUB subset of w;
such that:

1. If ais in C and g is less than « then p is in L,[A] and every ¢ < p in
L,[A] has an extension r € L,[A] such that r IF 3* € ¢ for some 5* between
6 and .

2. If ais in C then C' N« belongs to L[A N af.

C'is constructed by choosing L, [A], 7 > wy, to contain p, 0 and A and taking
C to be {i <wy | i =wy N M;, where M; = the Skolem hull of i U {p, o, A}
in L, [A]}.

Now choose o € Lim CNX and let (7, | n € w) be any increasing w-sequence
contained in C' with supremum «. We inductively define conditions ¢, of
length ~, as follows. Set gy to be the L[A]-least extension of p of length ~o.
If g, is defined, let ¢/, be the L[A]-least extension of ¢, such that ¢/ (v,) =1
and ¢, forces some (3, greater than 7, to belong to o; note that by property 1
above, 7/, = (the length of ¢},) is less than the least element of C' greater than
Yn- Let R, be a real coding the ordinal ~,,; and extend ¢}, to ¢/ of length
v+ w by defining ¢ (v, + k) = R, (k). Then ¢, is obtained by extending
q" to length 7,1, always taking the value 0 at and above 7/, + w. It is clear
that ¢,41 is a condition, using the definition of ¢/..

Let ¢ be the union of the g,’s. Then {y € C' N[y, ) | ¢(7) = 1} equals
{7n | n € w}. By property 2 above, {7, | n € w} belongs to L[A N «, g, and
therefore «v is countable in L[A, g], establishing that ¢ is a condition. As ¢
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forces that o N« is unbounded in «, ¢ also forces that a belongs to o. Since
« belongs to X, we have ¢ IF X No # (), as desired. O (Lemma 3.4.1)

Note that Lemma 3.4.1 also holds under the weaker hypothesis that R
does not exist for some real R, by relativisation to R. (Indeed, one only needs
that A% does not exist for some set of ordinals A.)

Lectures 12 and 13

Now to prove Theorem 3.4, suppose that w; is not inaccessible to reals.
Thus for some real R, w; = w; of L[R]. As the real R plays no role in the proof
below, we will assume that R equals 0. In particular 0% does not exist and
therefore by Lemma 3.4.1, in a stationary-preserving set-generic extension,
H(ws) = Ly,[R] for some real R. For the moment, argue in this extension.
As the real R plays no role in the arguments below, we also assume that R
equals 0.

For any A C w; consider now the function f, : w; — w; defined by
fa(a) = the least 3 such that « is countable in Lg1[A N al.

Note that by assumption, w; = w! and therefore f, is totally defined for
every A. We say that A is faster than B iff f4 < fg on a CUB.

Lemma 3.4.2. (Ralf Schindler) For any A there is a faster B in a further
stationary-preserving forcing extension.

Given this lemma, we prove Theorem 3.4. Set Ay = Ry = 0. By the
lemma there is A; which is faster than Ag in a stationary-preserving forcing
extension. Aq, together with a CUB set C; witnessing that A; is faster than
Ap, can be coded by a real Ry via a ccc forcing; we write A; = A(R;),
C1; = C(Ry). Then R; satisfies the II;(H (wy)) condition

For all @ < wi, far,)(e) < fo(a) for all o in the CUB set C'(R;).

By Y2(H(wy)) absoluteness for stationary-preserving forcings, there is such
a real Ry in the original ground model V. Then the real R, is faster than the
real Ry = (). But we can repeat this, obtaining R, which is faster than R,,
for each n. Thus fg,,, < fr, on a CUB for each n, a contradiction.
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Proof of Lemma 3.4.2. The proof is similar to the proof that the reshaping
forcing is stationary-preserving. Consider the forcing P whose conditions are
pairs (b, ¢) where:

¢ is a countable closed subset of w;.
b:maxc — 2.
For all « € ¢, v is countable in Ly, [0 | o]

Conditions are ordered by: (b, co) < (b1, c1) iff ¢o end-extends ¢; and by N
max c¢; = by;. Any condition can be extended so as to increase max c above any
given countable ordinal: Given (b, ¢) there are arbitrary large limit ordinals
a > maxc with fa(a) > «. We obtain a condition by adding a to ¢ and
extending b to any b’ of length « so that « is countable in L, [V].

Thus if G is P-generic then B = U{b | (b,c) € G for some c} is faster than
A, as witnessed by the CUB set C'= U{c | (b, c) € G for some b}. It remains
only to show that P is stationary-preserving.

Suppose that p = (b,¢) € P, X is stationary and o is a name for a CUB.
Let Cy O (4 be CUB sets such that:

1. If ais in Cy and [ is less than a then p is in L, and every ¢ < p in L,
has an extension r € L, such that r |- §* € o for some * between 3 and a.
2. If ais in C then fa(a) > o and Cp N a belongs to Ly, (q)-

Cy is constructed by choosing L., v > wy, to contain p, o, A and taking Cj
to be {i < w; | i = wy N M;, where M; = the Skolem hull of i U {p, o, A} in
L.,}. Then (4 is defined to be {i < wy | i = wy N N;, where N; = the Skolem
hull of 4 U {p, 0, A,v} in L1, }.

Now choose o € Lim C; N X and let (v, | n € w) be any increasing w-
sequence contained in C with supremum «. We inductively define conditions
Gn = (b, cy) of length ~,, as follows. Set gy to be the L-least extension of p
of length ~o. If ¢, is defined, let ¢/, = (¥, ¢,,) be the L-least extension of g,
such that b/,(y,) = 1 and ¢, forces some (3, greater than 7, to belong to o;
note that by property 1 above, 7/, = (the length of ¢,) is less than the least
element of C greater than ~,. Let R,, be a real coding the ordinal 7,,; and
extend 0/, to b of length +/, + w by defining b (v, + k) = R, (k) for each
k € w. Then ¢, is obtained by setting ¢,+1 = ¢, U {7n41} and extending
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b’ to length ~,.1, always taking the value 0 at and above ~/ + w. Note that
@n+1 is a condition as 7,1 is countable in L, . 41[bpi1] but fa(yns1) > Vg1

Let b be the union of the b,,’s and ¢ the union of the ¢,’s together with
the ordinal ao. Then {7y € Cy N [y, ) | b(7y) = 1} equals {7, | n € w} and by
property 2 above, Cy N« belongs to Ly, ). It follows that a is countable in
Ly, ()[b], establishing that ¢ = (b, c) is a condition. As ¢ forces that o N is
unbounded in «, ¢ also forces that « belongs to ¢. Since a belongs to X, we
have ¢ IF X No # (), as desired. O

This completes the proof of Theorem 3.
Persistence of ¥3(H (w1)) absoluteness

It is reasonable to consider Abs(X3(H (wy)),P) provided one imposes the
hypothesis that ¥3(H(w;)) formulas persist for P-generic extensions. The
latter is equivalent to saying that Abs(Xy(H (w1)),P) holds in all P-generic
extensions, a form of “two-step absoluteness” for P-forcing. We consider next
some examples of this.

Theorem 6.1. The following are equivalent:

1. All set-generic extensions obey Yo(H (wi))-absoluteness for further set-
generic extensions.

2. Every set of ordinals has a #.

Proof. (1 — 2) Assume property 1 and we first show that 0% exists. If not,
then kT = k* of L, where k = R,,. Let V[G] be a set-generic extension where
kT of L = wy, obtained by collasping k to w. Then for some real R in V]G],
wy; = wy of L[R]. This is a IIy(H (wy)) property:

W1 = Wwq of L[R] iff
H(w;) E Va3S(S is a real in L[R] and S codes «).

But this property is false in V[G][H], where H collapses w; of L[R] to w. So
Yo(H (w1)) absoluteness fails between V|G| and V[G][H].

The same argument shows that R* exists for each real R. As property 1
holds in all set-generic extensions, it follows that in all set-generic extensions,
every real has a #, i.e., every set of ordinals has a #.

Lectures 14 and 15
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(2 — 1) Recall that elements of H(w;) can be coded by reals, and the set
of reals C coding an element of H(w;) forms a II} set (i.e., a set of the form
{z | Vyp(x,y)} where x,y vary over reals and ¢ is arithmetical). It follows
that a 35(H (w;)) formula can be translated into a ¥} formula about reals:

Jda € H(w1)Vb € H(w1)p(a,b) (p Ag) iff
dr € CVy € Cyp*(z,vy),

where ¢* is arithmetical. As C is IT] the latter formula is ¥1. So property 1
of the theorem follows from:

(%) All set-generic extensions obey Y absoluteness with respect to further
set-generic extensions.

We will prove (%) under the assumption that every set has a #, or equiva-
lently, that in every set-generic extension, every real has a #.

First just assume that every real has a # and let A = {z | Vy3zp(z,y, 2)},
¢ arithmetical, be a II} set. Assuming that A is nonempty, we show how to
choose a “canonical” element of A.

A tree on a set B is a collection of finite sequences of elements of B
closed under initial segment. If T" is a tree on By X By X --- X B,,, s; a finite
sequence from B; for 1 < i < n and the s;’s all have the same length, then
T(s1,. s8n1) = {tn | (51 1 1,... 801 | I,t,) € T, where | = length of
t, < length of each s;} (and where we identify an n-tuple of sequences of
length [ with a sequence of length [ of n-tuples in the natural way). If z; is
an w-sequence from B; for each 1 <1i < n then T'(z1,...,2,-1) = U{T (21 |
Loooyxpq [ ] <w}.

Now B = {(z,y) | 3z¢(z,y,2)} is X1 and therefore there is a tree T on
2 x 2 x w such that (z,y) € B iff T'(z,y) has an infinite branch. Then:

x e Aiff
Vy T'(x,y) has an infinite branch.

Now let x be an uncountable regular cardinal and define the orderings U" and
Uf(z) (z areal) as follows: An element of U” is a triple (s,t, f), with s and
t finite sequences of 0’s and 1’s of the same length and f an order-preserving
function from (7'(s,t)*, <*) into x, where T'(s,t)* is the finite set of all finite
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sequences in 7'(s, t) taking values less than Length(s) = Length(¢), and where
<*is the Kleene-Brouwer order on finite sequences of natural numbers: u <* v
iff u properly extends v or u is less than v in the lexicographic order. The
ordering on U" is the natural one: (sg, to, fo) < (s1,t1, f1) iff sq, to, fo extend
s1,t1, f1, respectively. For a real xz, U*(z) denotes the set of pairs (¢, ) such
that for some n, (z [ n,t, f) belongs to U".

Claim 1. z € A iff U*(x) is well-founded.

Proof of Claim 1. An infinite descending sequence through U*(z) yields a
real y and an order-preserving function from (7'(z,y), <*) into &; it follows
that T'(x,y) has no infinite branch, and therefore x does not belong to A.
Conversely, if x does not belong to A, then choose y such that T'(z,y) has
no infinite branch, choose an order-preserving function f from the countable
well-ordering (T'(x,y), <*) into k and define f,, = f | T(x [ n,y | n)*; then
(x [n+ 1y [ n+1,fo) isless than (z [ n,y | n, f,) in U” for each n, so
(y [ m+1, fny1) is less than (y | n, f,,) in U*(z) for each n; it follows that
U”(x) is not well-founded. O

Note that if = belongs to A then the canonical ranking function F** on
U"(x) is constructible from a real, as it is constructible from x and 7. Now
we want to choose a particular  such that U"(z) is well-founded. For this
purpose we need to compare ranking functions on the orderings U”(s,t) =
{f1(s]nt]n,f)e U" for some n}. Fix s,t of the same length and let
L* denote U{L[x] | = a real}. Suppose that F,G € L* are functions from
U"(s,t) into the ordinals. We write F' <* G iff from some CUB C C &,
C e L*, F(f) < G(f) for all f € U"(s,t) with Range (f) C C. For any
F.G either FF <* GG or G <* I, since F, G are constructible from reals and
therefore by our assumption that every real has a #, there is a CUB subset
of k which forms a set of order-indiscernibles relative to I, G. Therefore <*
gives a wellordering if we identify F' with G when F' =* G.

Given n let tq1,to, . .., ton list the 0, 1-sequences of length n in lexicographic
order. Then define a* = (f31,..., fan), where (3; is the rank of F* [ U"(x |
n,t;) in <*.

We now define a canonical element of A. Choose x; to minimize a7, z(0)
(in the lexicographic ordering of finite sequences of ordinals) for x € A and set
nog = x1(0). Then choose x5 to minimize af, z(1) for € A which minimize
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af, x(0) and set n; = x9(1). Continue in this way, producing a real z* =
<n0,n1, .. >

Claim 2. z* € A.

Proof of Claim 2. For each n and ¢ of length n choose F™(t) with domain
U"(x* | n,t) so that the ranks of the F(t) realise a;:». Then for some CUB C,
the F(t) restricted to elements of U*(z* | n,t) with range in C' cohere with
each other. It follows that U(z*) is well-founded, and therefore z* belongs to
A. O

Now we are ready to verify () (and therefore property 1 of the theorem),
assuming that in every set-generic extension, every real has a #. Suppose
that V[G] is a set-generic extension of V and ¢(z) is a I13 formula with real
parameter from V[G]. Suppose that V[G|[H] is a set-generic extension of
V|G| where ¢(x) holds for some real z. We want to show that ¢(x) holds in
V[G] for some x in V[G]. By assumption every real in V[G][H]| has a #. Let
Kk be greater than the size of the forcing that produces H over V[G]|. Now
form the ordering U* as above in V[G], for the I1} set A = {x | ¢p(x)}. U” has
the same definition in V[G][H] as it has in V[G]. Any ranking function on
U"(s,t), s,t finite 0, 1-sequences of the same length, which is constructible
from a real in V[G][H] is =*-equivalent to such a function in V[G] (with a
CUB C C k in V[G] witnessing this), as H is generic over V|G| for a forcing
of size less than x.

Now in V[G][H], consider the set of pairs (s, F'), where s is a finite 0, 1-
sequence and F' is a ranking function on U"(s) constructible from a real in
V[G]. Order such pairs by (sg, Fy) < (s1, F1) iff 5o extends s; and Fp extends
Fy on all (¢, f) with Range (f) C C, for some CUB C C & in V[G]. Then in
V[G][H] this ordering is not well-founded, as U"(z) has a ranking function
constructible from a real for some x, and the restriction of this function to
Uf(z | n) is =*-equivalent to a function constructible from a real in V]G],
witnessed by a CUB C' C k in V|[G]. It follows that this ordering is not
well-founded in V[G], U"(z) is well-founded for some real x in V[G] and the
given I} formula o(x) holds for some real in V[G], as desired. O

Lectures 16 and 17
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Theorem 9. The following are equiconsistent:
1. 35(H (wq))-absoluteness for set-generic extensions and every set has a #.
2. There exists a reflecting cardinal and every set has a #.

Proof. We imitate the proof of Theorem 3.1. Suppose that every set has
a # and k is reflecting. Let V[G] be the generic extension of V' obtained
by collapsing every ordinal less than k to w; we show that V[G] witnesses
property 1. Suppose that ¢ is a ¥3(H (w;)) formula with parameter from V[G]
which is forced to hold in some set-generic extension of V[G]. First assume
that the parameter in ¢ belongs to V. Then the following Y, statement
mentioning this parameter holds in V:

There is a cardinal 0 and a forcing P € H () such that H(0) F (P I o).

By reflection there is such a §, P in H (k). Let V]g] be P-generic over V,
g € VI[G]; there is such a g since the V-power set of P is countable in
V[G]. Then V]g] satisfies ¢. Since V' Every set has a #, ¢ is persistent for
set-generic extensions of V' and therefore ¢ also holds in V[G]. Since V[G]
also satisfies “Every set has a #”, we are done. If the parameter in ¢ does
not belong to V, then as in the proof of Theorem 3.1, we factor V]G] as
VIG(< a)][G(> «)], where the parameter belongs to V][G(< )], a < k.

Now assume that 1 holds. We show that w; is reflecting in an appropriate
inner model where every set has a #.

Fact. Suppose that every set has a #. Then there is a smallest inner model
L# in which every set has a #. Moreover, this inner model has the following
property: There is a sequence (L¥ | o € Ord), such that:

1. For each o, L¥ is transitive of ordinal height a.

2.a<f— L¥CLY.

3. For each infinite L#-cardinal 6, ngé = H(@)L#.

4. For each infinite cardinal 0, (L¥ | o < 6) is ¥y-definable over H ().

Assuming 1, we now show that k = w} is reflecting in L#. Suppose that

L# E ¢, where ¢ is a Yy formula with parameters from L#. We must show
that ¢ is true in L¥#. Since ¢ is true in L#, by reflection it is also true in
Lj& for some L#-cardinal 6. There is a set-generic extension of V' in which
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f is countable. Therefore in some set-generic extension of V' the following
formula (with parameters from L# C H(w;)Y) is true:

There is a countable ordinal § such that @ is a cardinal of L# and Lf F .

This formula is ¥3(H (w;)) as (L7 | a < wy) is Yp-definable over H(w;). By
our assumption of ¥3(H (wy))-absoluteness, the above formula is also true in
V. Therefore there is an ordinal @ less than w} = & such that Lj& F ¢ and
H(w;)V E 0 is an L¥-cardinal. Then 6 really is an L#-cardinal and therefore
ngé is ¥j-elementary in L¥. As ¢ is Y, it follows that L¥ also satisfies ¢, as
desired. O

¥4 (H (wy))-absoluteness for set-generic extensions is reasonable provided
Y4(H (wy)) formulas persist for set-generic extensions, i.e., provided that all
set-generic extensions obey Y3(H (w;))-absoluteness for further set-generic
extensions.

Theorem 10. Assume that n is greater than 0. Then the following are equi-
consistent:

1. All set-generic extensions obey %, o(H (wq))-absoluteness for further set-
generic extensions.

2. There exist n strong cardinals.

Proof. We first show that the consistency of 2 implies that of 1.

Definition. Suppose that k£ < A are inaccessibles. Then x is A-strong iff there
is an elementary embedding 7 : V — M with critical point x such that
H(X) € M. And & is strong iff it is A-strong for all inaccessible A > k.

Fact. If k is A-strong then there is an elementary j : V' — M witnessing this
such that M* C M.

We shall need some facts about trees. A free on a set X is a subset of
Seq(X) = the set of finite sequences of elements of X closed under initial
segments. For T a tree on X we let [T] denote the set of infinite branches
through T, i.e., the set of f € X“ such that f [ n € T for all n. We think
of a tree on Y x Z as a set of pairs (s,t) € Seq(Y) x Seq(Z) where s and ¢
have the same length. If 7" is a tree on Y x Z and s € Seq(Y’) then we set
T, = {t| (s | Length(¢),t) € Y} and for x € Y¥, T, = U{Ty}, | n € w}. The
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projection p[T] is defined by: x € p[T] iff T,, has an infinite branch. We say
that p[T] is Z-Suslin via T.

Now we consider k-absolute Suslin representations. We say that a set G
is (< k)-generic over a model M iff G is P-generic over M where M F P
has cardinality less than x. Suppose that T, U are trees on X x Y, X x Z,
respectively. We say that T', U are k-absolute complements iff whenever G
is (< k)-generic over V', we have V|G| E p[T] = X* — p[U]. The tree T is
k-absolutely complemented iff there is a U such that T, U are x-absolute
complements.

Remark. Note that if p[T], p[U] are disjoint in V' then they are automatically
disjoint in any extension of V', by a simple absoluteness argument. What
absolute complementation adds is that the union of p[T], p[U] is all of X*.

Definition. A C X is k-absolutely Suslin iff A = p[T] for some r-absolutely
complemented tree T'. If A is defined by the formula ¢ (with parameters),
then the pair (A, ¢) is k-absolutely Suslin iff A = p[T] for some r-absolutely
complemented tree T" with the additional property that p[T] = {z | ¢(x)}
in all (< k)-generic extensions. We say that A is absolutely Suslin iff A is
r-absolutely Suslin for every x; similarly for (A, ¢).

The proof of Theorem 6.1 (2 — 1) shows:

Theorem 10.1. If every set has a # then (A, ¢) is absolutely Suslin whenever
A C w” is the set of reals defined by a X} formula ¢ (with real parameters).

We shall prove:

Theorem 10.2. Suppose that there exists a strong cardinal x, A C w* x w*
and (A, ) is absolutely Suslin. Let B = {z | (z,y) € A for some y} and v
the formula Jy € w¥p(x,y). Then (B, 1)) is absolutely Suslin in V[G], where
G is generic for the Lévy collapse of 22° to w.

Now using this, we prove that the consistency of 2 implies that of 1.
Suppose that x is the least strong cardinal of V. It follows that V' is closed
under #, and therefore by Theorem 10.1, (A, ¢) is absolutely Suslin when
A is the set of reals defined by a X1 formula . The same is true for II3.
By Theorem 10.2, after collapsing 22° to w, we obtain a model where (B, )
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is absolutely Suslin when B is defined by a X} formula ¢. In particular, for
each k there is a tree T, such that p[T.] = {x | ¥(x)} in all (< k)-generic
extensions; this implies Yj-absoluteness in all set-generic extensions, by the
absoluteness of well-foundedness for trees. If there were two strong cardinals
in V', then there is still a strong cardinal in this generic extension, and we
can repeat the argument, obtaining a model where Y}-absoluteness holds for
set-generic extensions, etc. As X} ;-absoluteness is the same as 3, o (H (wy))-
absoluteness, we are done.

Lecture 18

Proof of Theorem 10.2. Suppose that A is the projection of the tree T' on
w X w x Z, where T has a A-absolute complement U and p[T| = {z | p(z)} in
all (< A)-generic extensions. Let S be the same as the tree T', but regarded
as a tree on w X (w x Z). So p[S] = {z | (z,y) € p[T] for some y} = B, and
p[S] equals {x | yp(x,y)} in all (< \)-generic extensions.

Claim. Suppose that k is A\-strong and j : V — M witnesses this, where
M« C M. Suppose that T is a tree on w x Z for some Z. Let GG be generic
over V for the Lévy collapse of 22" to w. Then in V[G], j(T) has a A-absolute
complement.

We prove Theorem 10.2 using this Claim. Applying the Claim to the tree
S, we obtain a A-absolute complement for j(.S) in V[G], where G is generic
for the Lévy collapse of 22" to w. It suffices to show that p[S] = p[j(S)]
in VI[G|[H] for any (< A)-generic H, for then S has the same A-absolute
complement as j(S). Argue now in V[G][H]. As p[S] = {z | (z,y) € p[T] for
some y}, p[i(S)] = {z | (z,y) € p[j(T)] for some y}, it suffices to show that
p[T] = p[j(T)]. Clearly p[T] C p[j(T)], as j sends a branch through 7" to a
branch through j(T'). Conversely, if (x,y) ¢ p[T], then (z,y) € p[U] (where
U is a A-absolute complement for T), so (z,y) € p[j(U)]; by elementarity
pl7(U)] and p[j(T)] are disjoint in M, and therefore by absoluteness are
really disjoint. Therefore (z,y) ¢ p[j(T)].

To prove the Claim we shall need some facts about measures. For any set
Z, Meas,(Z) denotes the set of k-additive measures on Z<. If k is w; then
we write Meas(Z) for Meas, (7). If 1 belongs to Meas(Z) then the dimension
of p, written dim(u), is the unique n such that p(Z™) = 1. If u, v € Meas(Z)
then we say that p projects to v iff dim(v) < dim(p) and for A C Z¢:
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V(A) = p({u € Z¢¥ | u | dim(v) € A}). If p projects to v then there is a
natural embedding =, ,, : Ult(V,v) — Ult(V, i) obtained by sending [f], to
[f*],, where f*(u) = f(u [ dim(v)) for all u € Z¥.

A tower of measures on Z is a sequence (u, | n < w) such that pu, €
Meas(Z) has dimension n for each n, and whenever m < n < w, u, projects
t0 fim. If (pn | » < w) is a tower of measures then Ult(V, (i, | n < w))
denotes the direct limit of the Ult(V, u,) via the embeddings 7, ... One
can show that Ult(V, (u, | n < w)) is well-founded iff whenever pi,,(A4,) =1
for each n there exists f such that f [ n € A, for each n.

Proof of Claim. There is a tree T* C T of size x such that p[T| = p[T"] in any
(< k)-generic extension of V' (obtained by listing all P, o where P € H(k)
and o is a P-name for a real, and for each such P, o putting into 7™ all
elements of Z which are forced by some condition in P to belong to the least
branch through T" projecting to o). We can assume that 7™ is a tree on w X k.

In V]G] the set Meas, (k<) is countable. Let m : w — j[Meas,(xk<“)] be
an enumeration in V]G] such that m(e) concentrates on " for some n < e.
Each measure in j[Meas,(k<“)] extends from M to M[G] since 22" is less
than j(k). Similarly, since A < j(k), these measures extend to M[G][H]
whenever H is (< \)-generic over M[G]. Notice that since M contains H(\)
and M¥ C M, any (< A)-generic H over V[G] is in fact (< \)-generic over
M|G] and M[G][H] is w-closed in V[G][H].

Define the tree S to consist of all (s, (g ..., a,_1)) such that:

s € w"

ap < j(k)*T

For all i < e < n: If m(e) concentrates on j(7%)s and m(e) projects to m(i),
then o, < Tm(i),m(e) (Ozz)

We will show that S is a A-absolute complement for j(7') in V[G]. Let H
be (< A)-generic over V[G] and z a real in V[G][H]; we must show that in
VIG|[H], x € p[j(T)] iff x ¢ p[S]. Note that since M[G][H] is w-closed in
VIG|[H], = belongs to M[G|[H].

For each (s,t) € j(T), consider the measure X(s,t) concentrating on 77
given by: A € X(s,t) iff t € j(A). Suppose that (x, f) is a branch through
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J(T*)in V. Then Ult(V, (E(x [ n, f [ n) | n € w)) is well-founded: Otherwise,
we can choose A, € 3(z [ n, f | n) and g, : A, — Ord such that for each n,
In11(y) < gn(y I n) for y € A, 1. But then j(g,1)(f [ n+1) <j(g.)(f [ n)
for each n, contradiction. It follows that Ult(M, (j(X(x [ n, f [ n)) | n € w))
is well-founded. The measures j(X(z | n, f [ n)) lift from M to M|[G][H] and
therefore we have the well-foundedness of Ult(M, (j(X(xz [ n,f [ n)) | n €
w)) for any branch (z, f) through j(7*) in M[G][H]; note that any branch
through j(7™) in V[G][H] in fact belongs to M [G][H] as the latter is w-closed
in V[G][H].

Suppose now that x € p[j(T)] in V[G|[H]. Then by absoluteness = €
ply(T)] in M[G|[H]. As T and T* have the same projection in any (< k)-
generic extension of V, it follows that j(7") and j(7™) have the same pro-
jection in any (< \)-generic extension of M, and therefore z € p[j(7™)] in
M|G][H]. Tt follows that = ¢ p[S], as the existence of a branch through
S, implies the ill-foundedness of Ult(M, (j(X(x [ n,f [ n)) | n € w)), in
contradiction to the above.

Conversely, suppose that x ¢ p[j(T)] in V[G][H]. Then = ¢ p[j(T*)]
in V[G][H] so there is a rank function f on 7. As z belongs to M|G|[H]
it follows that f also belongs to M[G][H]. For m(e) a measure concentra-
ting on some j(7%)ym, let o, equal [fl,), the ordinal represented by f
in Ult(M[G][H],m(e)) (where m(e) has been canonically lifted from M to
M|G][H]). Then (. | € € w) is an infinite branch through S,, as desired. O

Lecture 19
Strong absoluteness

The absoluteness principles that we have considered so far refer exclu-
sively to set-generic extensions. The Lévy-Shoenfield absoluteness principle,
however, applies to arbitrary extensions. The strong absoluteness princip-
les discussed below are in the tradition of Lévy-Shoenfield and impose no
genericity requirement on the extensions considered.

By extension of V' 1 shall mean a ZFC model V* which contains V' and
has the same ordinals as V. This is best formalised by regarding V' as a
countable transitive model of ZFC and allowing V* to range over countable
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transitive ZFC models which contain V' and have the same ordinal height as

V.

Lévy-Shoenfield absoluteness. Suppose that ¢ is a ¥; formula with real para-
meters true in an extension of V. Then ¢ is true in V.

Any consistent generalisation of Lévy-Shoenfield absoluteness must deal
with the following two obstacles:

Counterexample 1. There is a ¥; formula with parameter from H (wy) which
holds in some (set-generic) extension V* of V' but not in V.

Counterexample 2. There is a 3; formula with parameter from H((2%)")
which holds in some (ccc set-generic) extension V* of V' but not in V.

Counterexample 1 is witnessed by the formula “w;" is countable”. Coun-

terexample 2 is witnessed by the formula “There is a real not in P(w)"".

Let us say that a X, absoluteness principle is a principle asserting the
absoluteness of certain »; formulas with certain parameters with respect to
certain extensions of V. Our counterexamples imply that a consistent >
absoluteness principle must impose some restriction either on the choice of
formulas, the choice of parameters, the choice of extensions, or a combination
of the three.

I offer three proposals. The first allows arbitrary parameters, at the cost
of restricting the choice of extensions. The second allows arbitrary extensions,
at the cost of restricting the allowable parameters. And the third weakens
the parameter restrictions of the second proposal, at the cost of restricting
the choice of formulas in various ways.

a. Y1 absoluteness with arbitrary parameters.

A first attempt to avoid Counterexample 1 is to require that V' and V*
have the same w;. But ¥; absoluteness with parameters from H(ws) even for
wi-preserving extensions is also inconsistent: Let A be a stationary subset of
wy. Then the formula which asserts that A contains a CUB subset is >; and
true in a cardinal-preserving (set-generic) extension; therefore ¥; absoluten-
ess with parameters from H (wq) for wy-preserving extensions implies that A
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contains a CUB subset. But there are disjoint stationary subsets of wy, giving
disjoint CUB subsets of wq, a contradiction.

Even requiring stationary-preservation at w; (i.e, that stationary subsets
of wy in V remain stationary in V*) results in inconsistency:

Theorem A. There exists an extension V* of V' which is stationary-preserving
at w; such that some ¥; sentence with parameters from H(ws)" true in V*
is false in V.

Proof. By a theorem of Beller-David there is an extension V* with the same
wy as V containing a real R such that L,[R] fails to satisfy ZFC for each
ordinal a. Moreover, V* is stationary-preserving at w;. Now suppose that
the Theorem fails. Then there is such a real R in V', as this property of R
can be expressed by a >; sentence with parameters R and w;. In particular,
w1 is not inaccessible to reals. It is easy to see that the failure of the Theorem
implies that 1-absoluteness holds between V' and its stationary-preserving
at w; extensions. It then follows that w; is inaccessible to reals after all,
contradiction. O

One could continue to make further restrictions on the extension V*, such
as stationary-preservation at w; together with full cardinal-preservation, in
the hope of achieving the consistency of X;(H (ws)) absoluteness (without
imposing the requirement that V* be a set-generic extension of V'). But we
must also reckon with Counterexample 2.

A possible solution is described by the following. I say that an extension
V* of V' strongly preserves H (k) iff the H (k) of V* equals the H (k) of V' and
all cardinals of V' less than or equal to Card (H(k)) = 2<* remain cardinals
in V*.

Y1 absoluteness with arbitrary parameters. Suppose that x is an infinite car-
dinal and a Xy formula ¢ with parameters from H (k") holds in an extension
V* of V' which strongly preserves H(x). Then ¢ holds in V.

When & is w, this is Lévy-Shoenfield absoluteness. When &k is wq, this
asserts 3 (H (wy)) absoluteness for extensions which do not add reals and
which preserve cardinals up to 2%, Note that in the presence of ~ CH,
this axiom does rule out the two standard set-forcings for destroying the
stationarity of a subset of wy.
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It is possible that a weaker restriction on the extension V* will suffice,
provided we insist only on arbitrary ordinal parameters.

Y1 absoluteness with arbitrary ordinal parameters. Suppose that ¢ is a 3, for-
mula with ordinal parameters which holds in a cardinal-preserving extension

of V. Then it holds in V.

Counterexample 1 is avoided as we insist on cardinal-preservation. And
Counterexample 2 is avoided as we only allow ordinal parameters.

b. 31 absoluteness for arbitrary extensions.

Counterexamples 1 and 2 imply that to obtain a consistent version of
absoluteness for arbitrary ¥; formulas with respect to arbitrary extensions,
we must impose some restriction on our choice of parameters. A suitable
restriction is perhaps provided by the following definition.

Definition. Let x belong to V and let V* be an extension of V. [ say that x
is absolute between V' and V* iff there is some parameter-free formula which
defines = not only in V' but also in V*.

Y1 absoluteness for arbitrary extensions. Suppose that V* is an extension of
V and ¢ is a ¥; formula whose parameters are absolute between V' and V*.
Then if ¢ is true in V* it is also true in V.

Counterexample 1 is avoided as w}” may fail to be absolute between V and

extensions in which it is countable. Counterexample 2 is avoided as P(w)Y

may fail to be absolute between V' and extensions in which new reals are
added.

c. Cardinality, cofinality, CUB and powerset absoluteness principles.

Other forms of strong absoluteness result by onsidering special types of
Yy formulas. First I generalise our earlier notion of absolute parameter.

Definition. Suppose that x belongs to V', P is a subset of V' and V* is an
extension of V. Then z is absolute relative to parameters in P between V' and

V* iff there is a formula with parameters from P which defines x not only in
V', but also in V*.
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For cardinality and cofinality we have the following absoluteness princip-
les.

Cardinality absoluteness. Suppose that « is an ordinal, VV* is an extension
of V and « is absolute relative to bounded subsets of o between V' and V*.
Then if « is collapsed (i.e., not a cardinal) in V*, it is also collapsed in V.

Cofinality Absoluteness. Suppose that « is an ordinal, V* is an extension of
V and « is absolute relative to bounded subsets of a between V and V*.
Then if « is singular in V*, it is also singular in V.

For largeness in the sense of the CUB filter we have:

CUB absoluteness. Suppose that X is a subset of a regular cardinal x, V* is
an extension of V' and X is absolute relative to ordinals and bounded subsets
of k between V and V*. If cofinalities at most x are preserved between V'
and V* and X contains a CUB subset in V*, then it contains one in V.

The following is a strong absoluteness principle for the powerset operati-
on.

Powerset absoluteness. Suppose X is a subset of P(k), x an infinite cardinal,
V* is an extension of V' and X is absolute relative to ordinals and subsets
of kK between V' and V*. If cardinals at most s are preserved between V' and
V* then the cardinality of X in V* equals its cardinality in V.

Lecture 20
The consistency strength of strong absoluteness principles

I do not know if any of the above principles are provably consistent relative
to large cardinals. In this subsection I provide some lower bounds on their
consistency strength.

Theorem B. ¥ absoluteness with arbitrary parameters implies that the GCH
fails at every infinite cardinal, and for regular uncountable k, there is no k-
Suslin tree.

Proof. Suppose that the GCH held at the infinite cardinal x. Choose S C k™
to be a fat-stationary subset of k™ which does not contain a CUB subset. (S
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is fat-stationary iff S N C contains closed subsets of any ordertype less than
kT, for each CUB C' C k*.) The existence of such a set is guaranteed by a
result of Krueger. Then the forcing P that adds a CUB subset to S using
closed subsets of S ordered by end-extension has cardinality ' and, using
the fatness of S, is k-distributive. It follows that H (k™) is strongly preserved
by P. But a CUB subset of S witnesses a >; formula with parameter S not
true in the ground model, in contradiction to our hypothesis.

Suppose that there were a k-Suslin tree T' for an uncountable regular
cardinal k. Then forcing with this tree strongly preserves H(x) and adds a
witness to a Y; formula with parameter 7" not witnessed in the ground model,
in contradiction to our hypothesis. O

Corollary. X1 absoluteness with arbitrary parameters implies the consistency
of a measurable cardinal x of Mitchell order .

To study >; absoluteness with arbitrary ordinal parameters we make use
of the following result.

Lemma. Suppose that there is no inner model with a measurable cardinal «
of Mitchell order a.. Suppose that x is a singular cardinal. Then there is a
fat-stationary S C x* which is definable with parameter x in Mitchell’s core
model K for sequences of measures and does not contain a CUB subset in

V.

Corollary. The consistency strength of 3; absoluteness with arbitrary ordinal
parameters is at least that of a measurable cardinal x of Mitchell order k.

Proof. Assume ¥; absoluteness with arbitrary ordinal parameters and that
there is no inner model with a measurable cardinal « of Mitchell order a.
Let s be a singular strong limit cardinal. By the previous lemma, there is
a fat-stationary S C T in K which does not contain a CUB subset. The
forcing P that adds a CUB subset to S using closed subsets of S ordered
by end-extension is xT-distributive and witnesses a new Y; formula with
parameter S. But K is not changed by this forcing and therefore there is a
formula with ordinal parameters which defines .S both in V" and in a P-generic
extension. Thus to avoid a counterexample to our absoluteness hypothesis,
P must collapse a cardinal over V', which is only possible if the GCH fails at
k. This gives the consistency of a measurable s of Mitchell order x**. O
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Theorem C. Suppose that ¥; absoluteness for arbitrary extensions holds.
Then there is an inner model with a measurable cardinal o of Mitchell order
a.

Proof. If there is no inner model with a measurable cardinal « of Mitchell
order o, then by the lemma, if x denotes R, there is a fat-stationary subset
S of k* which is definable in K with parameter x and does not contain a
CUB subset. Then there is a formula which defines S not only in V' but also
in V[G], where G is generic for adding a CUB subset to .S. This is a violation
of our absoluteness hypothesis. O

Theorem D. Cardinal absoluteness implies that for each infinite cardinal x,
kT is greater than (k' of HOD).

Proof. If G is generic for the Lévy collapse of k' to w, then HOD is the same
in V' and in V[G], by the homogeneity of the forcing. This contradicts our
absoluteness hypothesis. O.

Corollary. Cardinal absoluteness implies that there is an inner model with a
strong cardinal, and, if there is a proper class of subtle cardinals, there is an
inner model with a Woodin cardinal.

It is possible to extend the Corollary to obtain inner models with a proper
class of Woodin cardinals containing any given set, under the assumption of
cardinal absoluteness and a proper class of subtle cardinals. This is more
than enough to imply Projective Determinacy.

Theorem D also holds for cofinality absoluteness, as the latter implies
cardinality absoluteness. CUB and powerset absoluteness have at least the
consistency strength of a measurable cardinal a of Mitchell order o using the
proof of Theorem C.
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