
Absoluteness Course, Wintersemester 2004Letures 1 and 2IntrodutionThis ourse will treat generalisations of the following lassial result. Foran in�nite ardinal κ, H(κ) denotes the set of sets whose transitive losurehas ardinality less than κ.Theorem 1. (Lévy Absoluteness) Suppose that ϕ is a Σ1 formula with para-meters from H(ω1). If ϕ is true in some extension of V satisfying ZFC (forexample, in a set-generi extension of V ) then ϕ is true in V .An elementary fat is that for any unountable ardinal κ, H(κ) is a
Σ1-elementary submodel of V . Therefore:Corollary 2. Suppose that W is an extension of V satisfying ZFC. Then
H(ω1)

V is a Σ1-elementary submodel of H(ω1)
W .What follows is an outline of the generalisations of Corollary 2 that wewill onsider in this ourse. Many onepts will be mentioned in this outlinethat will only later be de�ned, when we prove the mentioned results.De�nition. Suppose that P is a de�nable lass of posets. A P-generi ex-tension is a set-generi extension of V obtained by foring with a poset in

P. Then Σn(H(κ))-absoluteness for P-foring means that H(κ)V is a Σn-elementary submodel of H(κ)W whenever W is a P-generi extension of V .We abbreviate this as Abs(Σn(H(κ)),P).Thus Corollary 2 implies Abs(Σ1(H(ω1)), set-foring), i.e., Abs(Σ1(H(ω1)),P)where P = the lass of all posets.It follows that Σ2(H(ω1)) formulas are persistent for set-generi exten-sions of V , in the sense that if suh a formula holds in some set-generiextension then it holds in all larger set-generi extensions. Therefore it isreasonable to onsider Abs(Σ2(H(ω1)),P) for various foring notions P.Theorem 3. The following are equionsistent:1. Abs(Σ2(H(ω1)), set-foring). 1



2. Abs(Σ2(H(ω1)), ω1-preserving set-foring).3. Abs(Σ2(H(ω1)), stationary-preserving (at ω1) set-foring).4. Abs(Σ2(H(ω1)), proper set-foring) and ω1 is inaessible to reals.5. There is a re�eting ardinal, i.e., a regular ardinal κ suh that H(κ) is
Σ2-elementary in V .Theorem 4. Abs(Σ2(H(ω1)), semiproper set-foring) is onsistent relative toZFC.Theorem 5. The following are equionsistent:1. Abs(Σ2(H(ω1)),  set-foring) and ω1 is inaessible to reals.2. There is a Shrittesser ardinal.It is reasonable to onsider Abs(Σ3(H(ω1)),P) provided one imposes thehypothesis that Σ3(H(ω1)) formulas persist for P-generi extensions. Thelatter is equivalent to saying that Abs(Σ2(H(ω1)),P) holds in all P-generiextensions, a form of �two-step absoluteness� for P-foring. We onsider nextsome examples of this.Theorem 6. The following are equivalent:1. All set-generi extensions obey Σ2(H(ω1))-absoluteness for further set-generi extensions.2. All stationary-preserving at ω1 set-generi extensions obey Σ2(H(ω1))-absoluteness for further stationary-preserving at ω1 set-generi extensions.3. Every set has a #.Theorem 7? The following are equivalent:1. All proper set-generi extensions obey Σ2(H(ω1))-absoluteness for furtherproper set-generi extensions.2. Every set belongs to an inner model with a remarkable ardinal.Theorem 8? The following are equivalent:1. All  set-generi extensions obey Σ2(H(ω1))-absoluteness for further set-generi extensions.2. ω1 is weakly ompat relative to reals.There should be a version of Theorems 6-8 for semiproper foring.In light of Theorem 6, the orret ontext for Σ3(H(ω1))-absoluteness forset-generi extensions is ZFC + Every set has a #.2



Theorem 9. The following are equionsistent:1. Σ3(H(ω1))-absoluteness for set-generi extensions and every set has a #.2. There exists a re�eting ardinal and every set has a #.There should be results analogous to Theorem 9 for semiproper, properand .
Σ4(H(ω1))-absoluteness for set-generi extensions is reasonable provided

Σ4(H(ω1)) formulas persist for set-generi extensions, i.e., provided that allset-generi extensions obey Σ3(H(ω1))-absoluteness for further set-generiextensions.Theorem 10? The following are equivalent:1. All set-generi extensions obey Σ3(H(ω1))-absoluteness for further set-generi extensions.2. Every set belong to an inner model with a strong ardinal.Theorem 11. The following are equionsistent:1. Σ4(H(ω1))-absoluteness and every set belongs to an inner model with astrong ardinal.2. There exists a re�eting ardinal and every set belongs to an inner modelwith a strong ardinal.To ontinue, one adds strong ardinals.There should be appropriate versions of Theorems 10, 11 for semiproper,proper and .We next onsider absoluteness for H(ω2). This is partiularly interestingdue to its onnetions to the �bounded foring axioms�.Theorem 12. Abs(Σ1(H(ω2)), ω1-preserving set-foring) is false.Theorem 13. Abs(Σ1(H(ω2)),  set-foring) is equivalent to Martin's Axiomat ω1.Theorem 14. The following are equionsistent:1. Abs(Σ1(H(ω2)), proper set-foring).2. Abs(Σ1(H(ω2)), semiproper set-foring).3. There is a re�eting ardinal 3



Theorem 15. Abs(Σ1(H(ω2)), stationary-preserving at ω1 set-foring) impliesthat every set belongs to an inner model with a strong ardinal. The onsi-steny of Abs(Σ1(H(ω2)), stationary-preserving at ω1 set-foring) follows fromthat of a proper lass of Woodin ardinals.Theorem 16. Σ1(H(ω2))-absoluteness annot hold in all  set-foring ex-tensions.So it is not reasonable to look at Σ2(H(ω2))-absoluteness.Theorem 17. Σ1(H(ω3))-absoluteness for  set-foring extensions is equi-valent to Martin's Axiom at ω2. But for proper set-foring extensions it isfalse. Also, for set-foring extensions whih are stationary-preserving at both
ω1 and ω2 it is false?An appropriate form of Σ1(H(ω3))-absoluteness for more than  foringis not known.Absoluteness priniples on H(ω1) have no e�et on the size of the onti-nuum. However those on H(ω2) do:Theorem 18. Σ1(H(ω2))-absoluteness for proper set-foring implies 2ℵ0 = ℵ2.Strong AbsolutenessNotie that Lévy absoluteness applies to arbitrary extensions, not justset-generi ones. Are there strengthenings of Lévy absoluteness whih alsoapply to arbitrary extensions?Theorem 19.Σ2(H(ω1))-absoluteness (and hene alsoΣ1(H(ω2))-absoluteness)for (stationary-preserving at ω1) lass-foring extensions is false.A onsistent possibility is to require absolute parameters. A lass A isabsolute between V and an extension W i� some formula without parametersde�nes A both in V and in W .Conjeture. The following axiom is onsistent relative to large ardinals:Strong Absoluteness. Absoluteness holds for arbitrary extensions of V for
Σ1 formulas with absolute lass parameters: If a Σ1 formula ϕ with lass4



parameter A holds in an extension W of V and A is absolute between V and
W then ϕ holds in V .Theorem 20? (∗) implies the existene of an inner model with a Woodinardinal. Letures 3 and 4De�nitions and ProofsWe now begin the formal part of the ourse. Our �rst task is to prove:Theorem 1. (Lévy Absoluteness) Suppose that ϕ is a Σ1 formula with para-meters fromH(ω1). Suppose thatW is an outer model of V (i.e., an extensionof V satisfying ZFC with same ordinals as V ; for example, a set-generi ex-tension of V ). Then if ϕ is true in W it is also true in V .Proof. The idea is to assoiate to eah Σ1 formula ϕ with parameter x ∈
H(ω1) a tree Tϕ of size ωW

1 suh that in both V and W , ϕ is true i� Tϕ hasan in�nite branh (i.e., i� Tϕ is not well-founded). This redues Lévy absolu-teness to the absoluteness of well-foundedness of trees, a simple onsequeneof the ZFC axioms.To obtain the tree Tϕ we proeed as follows. For simpliity, assume that
x does not exist, i.e., that ϕ has no parameter. (The proof we give will�relativise� to the parameter x, so this is not a serious restrition.) As ϕ is
Σ1 it is equivalent toThere exists a transitive set t suh that t � ϕ.In fat, ϕ is equivalent toThere exists a ountable transitive set t suh that t � ϕ,sine if u is an arbitrary transitive set satisfying ϕ, we an replae u by thetransitive ollapse of a ountable elementary submodel of u, whih will thenbe a ountable transitive model of ϕ.Now for eah ountable transitive set t, the struture (t,∈) is isomorphi toa struture (ω,E) where E is a binary relation on ω. Conversely, by the Mo-stowski Collapse Theorem, if (ω,E) satis�es the Axiom of Extensionality and5



is well-founded, then it is isomorphi to (t,∈) for some ountable transitive
t. Therefore ϕ is equivalent toThere exists an (ω,E) satisfying both ϕ and the Axiom of Extensionsalitywhih is well-founded.Let ψ be the onjuntion of ϕ with the Axiom of Extensionality. Write ψ inprenex normal form, for example, as ∀x1∃x2∀x3∃x4γ(x1, . . . , x4), where γ isquanti�er-free. Then (ω,E) satis�es ψ i� there exist Skolem funtions f1 :
ω → ω, f1,3 : ω×ω → ω suh that (ω,E) � ∀x1∀x3γ(x1, f1(x1), x3, f1,3(x1, x3)),the latter being a universal formula.We now desribe a tree T ′ with the property that T ′ has an in�nitebranh i� some (ω,E), possibly ill-founded, satis�es both ϕ and the Axi-om of Extensionality. A node (element) of T ′ on level n is a �nite struture
(s, e) where e is a binary relation on s and s is a �nite set of natural num-bers ontaining n = {0, 1, . . . , n − 1}, together with funtions f s

1 : n → s,
f s

1,3 : n × n → s suh that s = Ran f s
1 ∪ Ran f s

1,3 and for all x1, x3 < n,
(s, e) � γ(x1, f

s
1 (x1), x3, f

s
1,3(x1, x3)). When extending a node, one inreases

n, enlarges the struture (s, e) and extends the funtions f s
1 , f

s
1,3. Then anin�nite branh through this tree produes a model (ω,E) of ψ, i.e., of ϕ to-gether with the Axiom of Extensionality. Conversely, if ψ has a model thenthis tree will have an in�nite branh.We need to modify T ′ to a tree T whose in�nite branhes orrespond towell-founded models (ω,E) of ψ. A node of T onsists of (s, e) and f s

1 , f
s
1,3as above, together with a funtion r : s → ωW

1 with the property thatif the pair (m,n) belongs to e, then r(m) < r(n). Then an in�nite branhthrough T gives rise to a model (ω,E) of ψ together with a �ranking funtion�
R : ω → ω1 with the property that (m,n) ∈ E implies R(m) < R(n); itfollows that the model (ω,E) must be well-founded. Conversely, if ψ hasa ountable well-founded model in W then the tree T will have an in�nitebranh, sine we an hoose a ranking funtion for that model with valuesless than ωW

1 .So the truth of ϕ is equivalent to the existene of an in�nite branhthrough T , and this equivalene holds not only in V , but also in W . If Thas an in�nite branh in V then of ourse it also has an in�nite branh in
W , sine W ontains V . Conversely, suppose that T has no in�nite branh6



in V . Then sine V satis�es ZFC, in V there is a �ranking funtion� G on T ,i.e., a funtion G from the nodes of T into Ord suh that if a is a node of Textending the node b of T , then G(a) < G(b). As the funtion G also belongsto W , it follows that T has no in�nite branh in W . Therefore we have:
ϕ is true in V i�
T has an in�nite branh in V i�
T has an in�nite branh in W i�
ϕ is true in W ,as desired. 2Corollary 2. Suppose that W is an extension of V satsifying ZFC. Then
H(ω1)

V is a Σ1-elementary submodel of H(ω1)
W .Proof. Suppose that a Σ1 formula with parameters from H(ω1)

V is true in
H(ω1)

W . Then it is also true in W and therefore by Lévy absoluteness, in
V . Therefore we need only show that H(ω1)

V is Σ1-elementary in V . But ifa Σ1 formula with parameters from H(ω1)
V is true in V , it is also true in aountable Σ1-elementary submodel M of V , in the transitive ollapse T of

M and therefore also in H(ω1)
V , sine T is a transitive submodel of H(ω1)

V .
2 It follows that Σ2(H(ω1)) formulas are persistent, in the sense that if
V ⊆ W are models of ZFC with the same ordinals then any Σ2(H(ω1))formula true in V is also true in W . For this reason, it is natural to onsiderAbs(Σ2(H(ω1),P), for various set-foring notions P, our next topi.We �rst proveTheorem 3.1. The following are equionsistent:1. Abs(Σ2(H(ω1)), set-foring).2. There exists a re�eting ardinal, i.e., a regular ardinal κ suh that H(κ)is Σ2-elementary in V .Proof. First suppose that κ is Σ2-re�eting, and we show that V [G] satis�esAbs(Σ2(H(ω1)), set-foring), where G is generi over V for Coll(ω,< κ), theforing that with �nite onditions ollapses every ordinal less than κ to ω.A ondition in Coll(ω,< κ) is a funtion p with domain a �nite subset of7



ω × κ suh that p(n, α) < α for eah (n, α) ∈ Dom(p). For any κ̄ < κlet Coll(ω,< κ̄) denote the set of onditions in Coll(ω,< κ) with domainontained in ω × κ̄.Lemma 3.1.1. (a) Suppose that κ̄ is a limit ordinal less than κ and X̄ isa maximal antihain in Coll(ω,< κ̄). Then X̄ is a maximal antihain inColl(ω,< κ).(b) Coll(ω,< κ) has the κ-, i.e., antihains in this foring have size lessthan κ.() If G is Coll(ω,< κ)-generi then G ∩ Coll(ω,< κ̄) is Coll(ω,< κ̄)-generifor eah limit ordinal κ̄ < κ.(d) If x is a real in V [G], where G is Coll(ω,< κ)-generi over V , then xbelongs to V [G ∩ Coll(ω,< κ̄)] for some limit κ̄ < κ.Proof. (a) It su�es to show that every ondition in Coll(ω,< κ) is ompa-tible with some element of X̄. Given a ondition p, let p̄ be p restrited toDom(p)∩(ω× κ̄). Then p̄ belongs to Coll(ω,< κ̄) and therefore is ompatiblewith some q̄ in X̄. But then p is also ompatible with q̄, sine q̄ and p − p̄have disjoint domains.(b) This follows from (a), sine if X is a maximal antihain in Coll(ω,< κ),a losure argument shows that X̄ = X ∩Coll(ω,< κ̄) is a maximal antihainin Coll(ω,< κ̄) for some limit κ̄ < κ.() This also follows from (a).(d) Let x = σG (i.e., σ is a name for x in V [G]). For eah n, the set of onditi-ons in Coll(ω,< κ) whih deide the sentene �n ∈ σ� is dense. Note that anymaximal antihain in a dense subordering of P is also a maximal antihainin P . For eah n let Xn be a maximal antihain of onditions whih deide�n ∈ σ�. Then eah Xn is a maximal antihain in P and x is determined byhow G intersets the Xn's. By (b), there is a limit κ̄ < κ suh that eah Xnis ontained in Coll(ω,< κ̄), and therefore x belongs to V [G ∩Coll(ω,< κ̄)].
2 (Lemma 3.1.1)Now suppose that ϕ is a Σ2(H(ω1)) formula with parameter p ∈ H(ω1)

V [G]whih is true in some set-generi extension of V [G]. Note that any Σ2(H(ω1))formula is also a Σ2 formula, as the relation �x ∈ H(ω1)� is Σ1. First assumethat p belongs to V ; sine the transitive losure of p is ountable in V [G],
p in fat belongs to H(κ)V . Then V satis�es the following sentene withparameter p: 8



There exists a set-foring P suh that P  ϕ.As ϕ is Σ2, the relation �P  ϕ� is also Σ2. As κ is re�eting, the abovesentene is true in H(κ). Let P be a set-foring in H(κ) whih fores ϕ.Then sine κ is strongly inaessible, the power set of P has size less than κin V and therefore is ountable in V [G]. It follows that in V [G] there existsa P -generi g over V , and sine P fores ϕ, we get V [g] � ϕ. Sine ϕ is
Σ2(H(ω1)), by persistene it is also true in V [G], as desired.If p is not 0, then we argue as follows. As p belongs to H(ω1)

V [G], itan be oded by a real in V [G]. By Lemma 3.1.1 (d), p belongs to V [G ∩Coll(ω,< κ̄)] for some limit κ̄ < κ. Now the foring Coll(ω,< κ) fators asColl(< κ̄) × Coll(≥ κ̄), and therefore V [G] = V [G(< κ̄)][G(≥ κ̄)], where
G(≥ κ̄) is P (≥ κ̄)-generi over V [G(< κ̄). Now repeat the above argumentusing the ground model V [G(< κ̄), whih ontains the parameter p, and its
P (≥ κ̄)-generi extension V [G(< κ̄)][G(≥ κ̄)] = V [G].Letures 5 and 6We omplete the proof ofTheorem 3.1. The following are equionsistent:1. Abs(Σ2(H(ω1)), set-foring).2. There exists a re�eting ardinal, i.e., a regular ardinal κ suh that H(κ)is Σ2-elementary in V .Proof. It remains to show that the onsisteny of 1 implies that of 2. Weshow that if Abs(Σ2(H(ω1)), set-foring) holds, then κ = ωV

1 is a re�etingardinal in L. Suppose that L � ϕ, where ϕ is a Σ2 formula with parametersfrom H(κ)L = Lκ. We must show that ϕ is true in Lκ. Sine ϕ is true in L,by re�etion it is also true in H(θ)L = Lθ for some L-ardinal θ. There isa set-generi extension of V in whih θ is ountable. Therefore in some set-generi extension of V the following Σ2(H(ω1)) formula (with parametersfrom Lκ ⊆ H(ω1)
V ) is true:

H(ω1) � There exists an ordinal θ suh that θ is a ardinal of L and Lθ � ϕ.By Abs(Σ2(H(ω1)), set-foring), the above formula is also true in V . Therefo-re there is an ordinal θ less than ωV
1 = κ suh that Lθ � ϕ and H(ω1)

V � θ is9



an L-ardinal. Sine H(ω1)
V is Σ1-elementary in V , θ really is an L-ardinal,and therefore Lθ is Σ1-elementary in Lκ. As ϕ is Σ2, it follows that Lκ alsosatis�es ϕ, as desired. 2Iterated Set-Foring and PropernessWe now onsider Abs(Σ2(H(ω1)),P) for various types of set-foring P.Some natural hoies for P are the following ⊆ Proper ⊆ Stationary-preserving at ω1 ⊆ ω1-preserving ⊆ Set-foringA foring P is stationary-preserving at ω1 i� whenever X ⊆ ω1 is stationary,it remains stationary in eah P -generi extension. The de�nition of properis more omplex, and is losely related to the method of foring iteration,whih we desribe next.First we onsider �nite-support iteration.De�nition. Let α be a nonzero ordinal. Pα is an iteration of length α with�nite support i� it is a set of α-sequenes with the following properties:(i) If α = 1 then for some foring notionQ0 = Q̇0, P1 is the set of all sequenes

〈p(0)〉 of length 1, where p(0) ∈ Q0. And 〈p(0)〉 ≤ 〈q(0)〉 i� p(0) ≤ q(0),
1P1 = 〈1Q0〉.(ii) If α = β + 1 then Pβ = {p ↾ β | p ∈ Pα} is an iteration of length β andthere is some Pβ-name Q̇β suh that 1Pβ  Q̇β is a foring notion and:
p ∈ Pα i� p ↾ β ∈ Pβ, p(β) is a Pβ-name of rank less than Rank Q̇β and
1Pβ  p(β) ∈ Q̇β .
p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ and p ↾ β  p(β) ≤ q(β), and 1Pα isde�ned by 1Pα(γ) = 1Q̇γ for all γ ≤ β.(iii) If α is a limit ordinal then for all β < α, Pβ = {p ↾ β | p ∈ Pα} is aniteration of length β and:
p ∈ Pα i�
p ↾ β ∈ Pβ for all β < α and 1Pβ  p(β) = 1Q̇β for all but �nitely many
β < α.Also: p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ for all β < α and 1Pα is de�ned by
1Pα(β) = 1Q̇β for all β < α.Notation. ≤β denotes the ordering of Pβ, β denotes the foring relation of
Pβ and β ϕ abbreviates 1Pβ β ϕ. 10



Theorem 3.2.1. Let Pα result from the iteration with �nite support of 〈Q̇β |
β < α〉. If β Q̇β is  for eah β < α then Pα is .A nie appliation of �nite support iteration is to Suslin's Problem. Suslinasked whether there is a omplete, dense linear ordering without endpoints,without an unountable set of pairwise disjoint intervals and not isomorphito the real line. It turned out the answer is Yes in L, but the answer is Noin an extension of L obtainable through iteration with �nite support.An equivalent version of Suslin's question is the following: Is there a SuslinTree? The latter is an unountable partially-ordered set (T,<T ) suh thatthe predeessors of eah element of T are well-ordered by <T and (T,<T )has no unountable hain or antihain.Notie that if (T,<T ) is a Suslin tree then (T,≥T ) is a partial-orderingand therefore an be used as a foring notion. If T is a Suslin tree with theproperty that eah t ∈ T has unountably many extensions in T , then foringwith T adds an ℵ1-branh through T and therefore T will not be Suslin inthe generi extension.Theorem 3.2.2. In L, there is an iteration with �nite support P of length ℵ2suh that if G is P -generi over L then in L[G] there are no Suslin trees.Iterations with ountable support are de�ned just like iterations with �nitesupport, but with the ondition at limit stages α given as follows:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ  p(β) = 1Q̇β for all but ountably many β < α.This type of iteration is needed when one wishes to use forings whih arenot . Often one performs an iteration of length ℵ2, using forings of size
ℵ1. To show that ardinals above ℵ1 are preserved one uses:Proposition 3.2.3. Let P be a ountable support iteration of length ℵ2 suhthat for β < ℵ2, P ↾ β has the ℵ2-. Then P has the ℵ2-.How does one show that ℵ1 is preserved in a ountable support iteration?One way is to assume that the forings used are ountably losed (i.e., everyountable desending sequene of onditions has a lower bound). However11



this is too restritive for appliations. Shelah isolated a useful ondition onthe forings used in the iteration, alled properness, whih guarantees pre-servation of ℵ1, is maintained through ountable support iteration and hasmany appliations.De�nition. P is proper i� player II has a winning strategy in the followinggame: Player I begins by seleting a ondition p and hoosing a name α̇0 foran ordinal. Player II hooses an ordinal β0. At the n-th move, n > 0, I playsa name α̇n for an ordinal and II plays an ordinal βn. Now II wins the gamei� for some q ≤ p :
(∗) q  For all n, α̇n equals βk for some k.Notie that if II has a winning strategy in the above game, then everyountable set of ordinals in a P -generi extension of V is a subset of a set ofordinals whih is ountable in V . Thus properness implies that ℵ1 is preser-ved. It is not di�ult to show that the same de�nition of properness reusltsif we modify the above game so as to allow player II to play ountable setsof ordinals rather than single ordinals (where II wins i� some q ≤ p foresthat eah ordinal name played by I belongs to the union of the ountablesets of ordinals played by II).Proposition 3.2.4. The following are equivalent:1. P is proper.2. For any unountable κ, every stationary A ⊆ Pω1

(κ) remains stationaryafter foring with P .3. For κ greater than the ardinality of the power set of P , there are CUB-many ountable M ≺ H(κ) suh that any p ∈ M an be extended to q ∈ Pwhih is (P,M)-generi: If D ∈M is dense on P then q fores the generi tointerset D ∩M .It is easy to see that any  foring and any ountably losed foring isproper.Theorem 3.2.5. Let Pγ be a ountable support iteration of length γ of Q̇β ,
β < γ suh that for every β < γ, β Q̇β is proper. Then Pγ is proper.A nie appliation of ountable support iteration is to prove the onsi-steny of the Borel Conjeture. Let X be a subset of [0, 1]. X has strong12



measure 0 i� for every sequene 〈ǫn | n ∈ ω〉 of positive reals there exists asequene 〈In | n ∈ ω〉 of intervals with length In ≤ ǫn suh that X ⊆
⋃

n In.Borel onjetured that strong measure 0 sets are in fat ountable. This on-tradits CH, but Laver proved the onsisteny of Borel's Conjeture using aountable support iteration of Laver foring.Laver foring is de�ned as follows. A set p ⊆ ω<ω is a tree i� it is losedunder initial segments. A tree p is a Laver tree i� for some s ∈ p (alled thestem of p):1. For all t ∈ p either t ⊆ s or s ⊆ t.2. For all t ∈ p extending s the set S(t) = {a | t∗a ∈ p} (the set of suessorsof t in p) is in�nite.Laver foring onsists of all Laver trees, partially ordered by inlusion. If Gis generi then f =
⋃
{s | s is the stem of some p ∈ G} is a funtion from ωinto ω, a Laver real. Laver foring is neither  nor ountably losed.By Proposition 3.2.3, if we iterate Laver foring with ountable supportfor ℵ2 steps over L, we will have the ℵ2- and therefore preserve all ardinalsgreater than ℵ1. To show that this iteration preserves ℵ1, it su�es to showLemma 3.2.6. Laver foring is proper.Proof. De�ne the relations ≤n as follows. Consider a anonial enumerationof ω<ω in whih s appears before t when s ⊆ t and in whih s ∗ a appearsbefore s∗(a+1) for a ∈ ω. If p is a Laver tree then the part of p above the stemis isomorphi to ω<ω and so we have a anonial enumeration 〈sp

i | i ∈ ω〉 ofit, where sp
0 is the stem of p. Note that if q ≤ p and sq

n = sp
m then n ≤ m.We de�ne:

q ≤n p i� p and q have the same stem and sp
i = sq

i for all i ≤ n.It is easy to show that if p0 ≥0 p1 ≥1 p2 ≥2 . . . then p =
⋂

n pn is a Lavertree, alled the fusion of the fusion sequene 〈pn | n ∈ ω〉.Fat. If p  α̇ ∈ Ord, m ∈ ω then there are q ≤m p and a ountable A ⊆ Ordsuh that q  α̇ ∈ A. 13



Proof of Fat. We assume that m = 0, as the proof for general m is almostthe same. If p is a Laver tree, n ∈ ω, q ≤ p and the stem t of q is maximalamong {sp
0, . . . , s

p
n} then

r = q ∪ {u ∈ p | u * t and t * u}is a Laver tree ≤n p, alled the n-amalgamation of q into p. This has theobvious generalisation to the amalgamation of {q1, . . . , qk} into p when the
qi extend p and their stems are all the maximal nodes among {sp

0, . . . , s
p
n}(for a uniquely determined n).We onstrut a fusion sequene 〈pn | n ∈ ω〉 with p0 = p and �nite sets Anso that the fusion of this sequene fores α̇ ∈

⋃
nAn. At stage n we alreadyhave pn. Let t1, . . . , tk be all the maximal nodes among spn

0 , . . . , s
pn
n . For eah

i ∈ {1, . . . , k} if there exists qi ≤ pn with stem ti and an ordinal αi
n so that

qi  α̇ = αi
n then we hoose suh qi and αi

n. Let An be the olletion of allthe αi
n hosen and let pn+1 be the amalgamation of {q1, . . . , qk} into pn. (If qidid not exist, then we take it to be the olletion of nodes in pn ompatiblewith ti.) We have pn+1 ≤n pn.Let p∞ be the fusion of the pn's and A =

⋃
nAn. To prove that p∞  α̇ ∈

A, let q ≤ p∞. There are q̄ ≤ q and α ∈ Ord suh that q̄  α̇ = α. Let nbe large enough so that the stem of q̄ is among K = {spn

0 , . . . , s
pn
n }. There is

t ∈ q̄ that is a maximal node in K and therefore one of the nodes onsideredat stage n, say t = ti. Let r onsist of those nodes of q̄ whih are ompatiblewith t. As r and α satisfy the requirements for hoosing qi in the de�nitionof pn+1 we indeed have hosen qi and αi
n. Beause r ≤ qi it must be the asethat α = αi

n and so r  α̇ ∈ A. Thus eah q ≤ p∞ has an extension r suhthat r  α̇ ∈ A. Therefore p∞  α̇ ∈ A. This proves the Fat.Now we an show that II wins the proper game for Laver foring (in theversion where I plays a ondition p and names for single ordinals, II playsountable sets of ordinals and II wins i� there is q ≤ p whih fores all thenames to be in the union of the sets or ordinals played). At the start of thegame let I selet p0 and the ordinal name α̇0. By the Fat there is p1 ≤0 p0and a ountable B0 suh that p1  α̇ ∈ B0. At the nth move, when I plays
α̇n there are pn+1 ≤n pn and a ountable set Bn with pn+1  α̇n ∈ Bn. Thenthe fusion of the pn's veri�es that II wins the game. 2Laver proves the onsisteny of Borel's Conjeture by showing: If GCHholds in V and X is an unountable set of reals in V then X does not have14



strong measure 0 in V [G] where G is generi over V for the ountable support
ℵ2-iteration of Laver foring.Letures 7 and 8We now return to the study of absoluteness.Theorem 3.2. Abs(Σ2(H(ω1)),Proper) is onsistent relative to ZFC.Proof. By a proper ω1-iteration with ountable support 〈Pi | i < ω1〉, we anprodue a generi extension L[〈Gi | i < ω1〉] of L whih satis�es absoluten-ess for Σ2(H(ω1)) formulas with parameters from L with respet to furtherproper set-foring extensions. This is possible as there are only ω1 reals in Land properness is preserved by ountable support iteration. We an furtherguarantee that for eah i < ω1, L[Gi] = L[Xi] for some Xi ⊆ ω1: At stage
i, �rst fore to guarantee absoluteness for some formula with a onstrutibleparameter, and then fore with the ountably-losed (and therefore proper)foring that ollapses the ardinality of this foring to ω1 using ountableonditions. The result is a model of the form L[〈Xi | i < ω1〉] with Xi ⊆ ω1for eah i, satisfying absoluteness for Σ2(H(ω1)) formulas with parametersfrom L with respet to further proper extensions. By dove-tailing, we anin fat ensure absoluteness for Σ2(H(ω1)) formulas with parameters from⋃

i<ω1
L[Gi] with respet to further proper extensions.Claim. Every real in L[〈Xi | i < ω1〉] belongs to L[〈Xi | i < j〉] for some

j < ω1.Proof of Claim: If R is a real in L[〈Xi | i < ω1〉] then R belongs to aountable, su�iently elementary submodel M of L[〈Xi | i < ω1〉], as well asto the transitive ollapse M̄ of M . But M̄ is of the form Lα[〈Xi ∩ β | i < β〉]where β is the ω1 of M̄ . It follows that R belongs to L[〈Xi | i < β〉], provingthe Claim.Thus L[〈Xi | i < ω1〉] is a model of Abs(Σ2(H(ω1)),Proper), as desired.
2 Notie that in the model of the previous result, ω1 is the same as ωL

1 . Thenext result implies that if ωL[R]
1 is ollapsed for eah real R, then Σ2(H(ω1))absoluteness for proper set-foring extensions is as strong (in terms of onsi-steny) as for arbitrary set-foring extensions.15



Theorem 3.3. The following are equionsistent:1. Abs(Σ2(H(ω1)),Proper) holds and ω1 is inaessible to reals (i.e., ωL[R]
1 isountable for eah real R).2. There exists a re�eting ardinal.Proof. The onsisteny of 2 implies that of 1, as by Theorem 3.1 it evenimplies the onsisteny of Σ2(H(ω1))-absoluteness for arbitrary set-forings.For the onverse we shall need some fats about 0#. The existene of

0# is equivalent to the statement that the unountable ardinals form alass of order indisernibles in L: For any formula ϕ(x1, . . . , xn), L satis�es
ϕ(κ1, . . . , κn) for some inreasing n-tuple κ1 < · · · < κn of unountableardinals i� L satis�es ϕ(κ1, . . . , κn) for all suh inreasing n-tuples. Thisimplies that all unountable ardinals are re�eting, Mahlo and muh morein L. The existene of 0# an also be haraterised in terms of a relationshipbetween the ardinals of V and those of L:Theorem 3.3.1. (a) Suppose that 0# exists. Then for every ardinal κ, κ+ of
L is less than κ+. (b) Conversely, if κ+ of L is less than κ+ for some singularardinal κ, then 0# exists.Assume now Abs(Σ2(H(ω1)),Proper) and ω1 inaessible to reals. Weshall show that either ω1 is Mahlo in L (i.e., if the set of ountable L-inaessibles is stationary in L) or ω1 is re�eting in L. This proves theTheorem: If ω1 is Mahlo in L, then by the its inaessibility in L, Lω1

is amodel of ZFC. For the same reason, the set {α | α < κ and Lα ≺ Lκ} is a lo-sed unbounded subset of κ. Sine ω1 is Mahlo in L there is an L-inaessible
α < κ in this set, and for any suh α, Lκ � α is re�eting.So assume that ω1 is not Mahlo in L (and therefore that 0# does notexist). We will show that ω1 is re�eting in L.To show that ω1 is re�eting in L it su�es to show: If x belongs to Lω1

,
ϕ is a formula and for some L-ardinal λ ≥ ω1, Lλ � ϕ(x) then there is suha λ < ω1 with x ∈ Lλ. For, given this, if ϕ is a Σ2 formula with parameter
x ∈ Lω1

, then Lλ � ϕ(x) for some L-ardinal λ and therefore by assumptionfor some suh λ < ω1; it follows that Lω1
� ϕ(x), as whenever λ0 < λ1 are

L-ardinals, any Σ2 formula with parameters from Lλ0
whih is true in Lλ0is also true in Lλ1

. 16



The proof proeeds in three steps:Step 1. By a ountably-losed foring we produe A ⊆ ω1 suh that everysubset of ω1 belongs to L[A] and if Lα[A], α > ω1 is a model of ZFC−Power,then Lα[A] � There is an L-ardinal λ suh that Lλ satis�es ϕ(x).Step 2. By a further proper foring, we produe A∗ ⊆ ω1 suh that if Lα[A∗∩γ]is any model of ZFC−Power satisfying γ = ω1, then Lα[A∗ ∩ γ] � There isan L-ardinal λ suh that Lλ satis�es ϕ(x).Step 3. By a further  foring, we produe a real R suh that for all α, if
Lα[R] is a model of ZFC−Power in whih �ω1 exists�, then Lα[R] � There isan L-ardinal λ suh that Lλ satis�es ϕ(x).This will omplete the proof: The latter ondition on the real R is unhan-ged if we restrit to ountable α, by re�etion. Therefore this ondition isequivalent to a Π1(H(ω1)) ondition, and by Abs(Σ2(H(ω1)),Proper) holdsfor some real R in V . By our assumption that ω1 is inaessible to reals,
Lω1

[R] satis�es �ω1 exists� and therefore Lω1
[R] satis�es that there is an L-ardinal λ suh that Lλ � ϕ(x). Then λ really is an L-ardinal and thereforewe have ompleted the proof that ω1 is re�eting in L.Now we turn to the proofs of Steps 1, 2 and 3.Letures 9 and 10Now we turn to the proofs of Steps 1, 2 and 3.Proof of Step 1. Choose an L-ardinal λ suh that Lλ � ϕ(x). Let δ > λ bea singular strong limit ardinal of unountable o�nality. Sine 0# does notexist, we have δ+ = (δ+ of L) and 2δ = δ+.Now ollapse δ to ω1 using ountable onditions: Conditions in Coll(ω1, δ)are funtions p from a ountable ordinal into δ, ordered by extension. As thereare only δ ountable subsets of δ, this foring has ardinality δ and thereforepreserves ardinals greater than δ. It follows that δ+ of L is the ω2 of theextension. CH holds in L[A0] as we have ollapsed 2ℵ0 < δ to ω1 withoutadding reals. Also, eah subset of ω1 added by this foring has a name of theform {(α̌, p) | p ∈ Xα, α < ω1}, where eah Xα is a subset of the foring; asthere are only 2δ = δ+ suh names, it follows that 2ω1 = ω2 in the extension.17



Let G be the generi funtion added by Coll(ω1, δ) and de�ne A0 ⊆ ω1by α ∈ A0 i� g(α0) < g(α1), where α = 〈α0, α1〉 is a pairing funtion on ω1.Then in every model of ZFC−Power of the form Lα[A0], α > ω1, there is awell-ordering of ω1 of length δ and therefore we have Lα[A0] � There is an
L-ardinal λ suh that Lλ satis�es ϕ(x). It remains to guarantee that everysubset of ω1 belong to L[A0].In V [A0] we have ω2 = (δ+)L and 2ω1 = ω2. In this model let B ⊆ ω2ode all subsets of ω1. We ode B by A1 ⊆ ω1 via a ountably losed almostdisjoint foring: In L[A0] hoose 〈bβ | β < ω2〉 to be distint subsets of ω1. Wean assume that these sets are almost disjoint, in the sense that if β0 6= β1,then bβ0

and bβ1
have ountable intersetion. Conditions in the oding of B by

A1 are pairs (p, p∗), where p is a ountable subset of ω1 and p∗ is a ountablesubset of ω2, ordered by:
(p, p∗) ≤ (q, q∗) i� p end-extends q, p∗ ontains q∗ and p− q is disjoint from
bα for α ∈ B ∩ q∗.This foring is ountably losed, has the ω2- and therefore preserves ar-dinals. Also if A1 is the union of the �rst omponents of onditions in thegeneri, then we have:
α ∈ B i� A1 is almost disjoint from bαand therefore B belongs to L[A1]. As the generi for this foring is entirelydetermined by the set A1, it follows that every subset of ω1 in V [A0][A1]belongs to L[A0][A1]. So the desired set satisfying the requirement of Step 1is A = {2α | α ∈ A0} ∪ {2α+ 1 | α ∈ A1}.Proof of Step 2. We produe A∗ using the following foring. P onsists of all
p : γ(p) → 2, γ(p) < ω1, suh that:
(∗) For all γ ≤ γ(p) and all α, if Lα[A ∩ γ, p ↾ γ] is a model of ZFC−Powerwhere α > γ and γ is the ω1 of Lα[A∩ γ, p ↾ γ] then Lα[A∩ γ, p ↾ γ] � Thereis an L-ardinal λ suh that ϕ(x) holds in Lλ.A P -generi adds a funtion F : ω1 → 2 suh that A∗ = {2β | β ∈ A} ∪
{2β + 1 | F (β) = 1} satis�es Step 2, sine this is guaranteed for ountable γby the de�nition of P and for γ = ω1 by Step 1. It remains to show:Lemma 3.3.2. P is proper. 18



Proof of Lemma. It su�es to show that for CUB many ountable N ≺
Lω2

[A], eah ondition p in N an be extended to a ondition q suh that qfores the generi to interset D ∩ N whenever D is a dense set in N . Wetake all ountable N ≺ Lω2
[A] whih have A and x as elements. Suppose that

p belongs to N and let N be isomorphi to N̄ = Lβ [A ∩ δ], where δ is the
ω1 of N̄ . Now N ontains a witness C to the non-Mahloness of ω1 in L, andsine C ∩ δ is unbounded in δ, it follows that δ belongs to C and is thereforesingular in L. Therefore β is not an L-ardinal. Let µ be the least ordinal sothat β is ollapsed in Lµ.We shall build q to be an extension of p of length δ, as the union ofonditions of length less than δ. (∗) holds for q when γ of (∗) is less than δdue to the fat that q is the union of onditions of length less than δ. (∗) holdsfor q when γ of (∗) is equal to δ and α of (∗) is at most β, by the elementarityof N in Lω2

[A]. (∗) holds for q when γ of (∗) is equal to δ and α of (∗) isbetween β and µ, as in this ase any L-ardinal of Lβ is also an L-ardinal of
Lα. Thus it su�es to build q so that δ is ollapsed in Lµ[A ∩ δ, q], for then
(∗) is vauous when γ of (∗) is equal to δ and α of (∗) is at least µ.As β is ollapsed in Lµ[A∩ δ] and we an assume that δ is not, we an write
Lβ[A ∩ δ] as the union of a ontinuous hain 〈Mi | i < δ〉 of Σ1-elementarysubmodels of Lβ[A ∩ δ], where eah Mi is ountable in Lµ[A ∩ δ] and thehain itself belongs to Lµ[A ∩ δ]. Let C be the set of intersetions of themodels of this hain with δ, a CUB subset of δ. We de�ne an ω-sequene
p = p0 ≥ p1 ≥ · · · of onditions below p suh that eah pn belongs to N ,eah dense set in N is fored by some pn to interset the generi in N and if
q is the union of the pn's, then {η ∈ C | q(η) = 1} is a o�nal subset of C ofordertype ω. Then δ is ollapsed in Lµ[A ∩ δ, q], as desired.To de�ne the pn's, enumerate the dense D ∈ N in an ω-sequene 〈Dn |
n ∈ ω〉 and hoose a o�nal subset C0 of C of ordertype ω. Indutively, hoose
pn as follows: If pn is de�ned then �rst extend pn at the next ω ordinals toode some Mi ∩ δ ∈ C0, where both Dn and this extension belong to Mi+1.Then extend further to length Mi ∩ δ, always assigning the value 0. Finally,hoose pn+1 to assign the value 1 at Mi ∩ δ and belong to Dn ∩ Mi+1. 2(Lemma 3.3.2)Proof of Step 3. Now we ode A by a real R. As ω1 is not Mahlo in L, thereis a CUB C ⊆ ω1, C ∈ L, onsisting of L-singulars. Let 〈αi | i < ω1〉 bethe inreasing enumeration of C ∪ {0} and for eah i let Ri be a real oding19



the ountable ordinal αi+1. Then if we de�ne B to be {αi + n | i < ω1 and
n ∈ Ri}, we have: α ountable → α ountable in L[B ∩ α]. Using this, wehoose distint reals Rα, α < ω1 so that Rα an be de�ned uniformly in
L[B ∩ α]. We may assume that the Rα's are almost disjoint (mod �nite).Now use these reals to ode B, A∗ by a real R using a  almost disjointoding: A ondition is a pair (p, p∗) where p is a �nite subset of ω and p∗ isa �nite subset of ω1, ordered by
(p, p∗) ≤ (q, q∗) i� p end-extends q, p∗ ontains q∗ and p− q is disjoint from
R2α when α ∈ B ∩ q∗ and disjoint from R2α+1 when α ∈ A∗ ∩ q∗.If R is the union of the �rst omponents of the generi, then R is almostdisjoint from R2α i� α ∈ B and is almost disjoint from R2α+1 i� α ∈ A∗.The foring is  and therefore preserves ardinals. Finally, as A∗ ∩ ω

Lα[R]
1is de�nable in Lα[R] for eah α < ω1, R ful�lls the ondition of Step 3. 2(Theorem 3.3) Leture 11We have seen thatΣ2(H(ω1)) absoluteness for proper forings is onsistentrelative to ZFC, but in the presene of the additional assumption that ω1 isinaessible to reals, it has the onsisteny strength of a re�eting ardinal.If �proper� is weakened to �semiproper�, the situation is the same, using amodi�ation of the proof of Theorem 3.2.A foring P is stationary-preserving (at ω1) i� stationary subsets of ω1remain stationary in P -generi extensions.Theorem 3.4. Suppose that Abs(Σ2(H(ω1)), stationary-preserving set-foring)holds. Then ω1 is inaessible to reals.Corollary 3.5. Abs(Σ2(H(ω1)), stationary-preserving set-foring) is equion-sistent with the existene of a re�eting ardinal.Proof of Theorem 3.4. We �rst prove:Lemma 3.4.1. If 0# does not exist then every set of ordinals is onstrutiblefrom a real in a stationary-preserving set-foring extension.20



Proof. As in Step 1 of the proof of Theorem 3.3, we an produe A ⊆ ω1by a ountably-losed foring so that in the extension H(ω2) = Lω2
[A] andthe given set of ordinals belongs to H(ω2). Let P be the �reshaping foring�,whose onditions are p : |p| → 2, |p| < ω1 suh that for all α ≤ |p|, α isountable in L[A ∩ α, p ↾ α]. We will show that P is stationary-preserving.Assuming this, let G be P -generi and F : ω1 → 2 the union of the onditionsin G. Using F , we an hoose a sequene 〈Rα | α < ω1〉 of distint reals suhthat Rα is de�nable uniformly in L[A∩α, F ↾ α] (by taking Rα to be the leastreal in L[A∩α, F ↾ α] distint from the Rβ , β < α). Now as in Step 3 of theproof of Theorem 3.3, we an ode A,G by a real via a  foring, resultingin a stationary-preserving extension in whih the given set of ordinals isonstrutible from a real, as desired.Now we show that P is stationary-preserving. Given p ∈ P , a stationary

X ⊆ ω1 and a name σ for a CUB subset of ω1, let C be a CUB subset of ω1suh that:1. If α is in C and β is less than α then p is in Lα[A] and every q ≤ p in
Lα[A] has an extension r ∈ Lα[A] suh that r  β∗ ∈ σ for some β∗ between
β and α.2. If α is in C then C ∩ α belongs to L[A ∩ α].
C is onstruted by hoosing Lγ [A], γ > ω1, to ontain p, σ and A and taking
C to be {i < ω1 | i = ω1 ∩Mi, where Mi = the Skolem hull of i ∪ {p, σ, A}in Lγ[A]}.Now hoose α ∈ Lim C∩X and let 〈γn | n ∈ ω〉 be any inreasing ω-sequeneontained in C with supremum α. We indutively de�ne onditions qn oflength γn as follows. Set q0 to be the L[A]-least extension of p of length γ0.If qn is de�ned, let q′n be the L[A]-least extension of qn suh that q′n(γn) = 1and q′n fores some βn greater than γn to belong to σ; note that by property 1above, γ′n = (the length of q′n) is less than the least element of C greater than
γn. Let Rn be a real oding the ordinal γn+1 and extend q′n to q′′n of length
γ′n + ω by de�ning q′′n(γ′n + k) = Rn(k). Then qn+1 is obtained by extending
q′′n to length γn+1, always taking the value 0 at and above γ′n + ω. It is learthat qn+1 is a ondition, using the de�nition of q′′n.Let q be the union of the qn's. Then {γ ∈ C ∩ [γ0, α) | q(γ) = 1} equals
{γn | n ∈ ω}. By property 2 above, {γn | n ∈ ω} belongs to L[A ∩ α, q], andtherefore α is ountable in L[A, q], establishing that q is a ondition. As q21



fores that σ ∩ α is unbounded in α, q also fores that α belongs to σ. Sine
α belongs to X, we have q  X ∩ σ 6= ∅, as desired. 2 (Lemma 3.4.1)Note that Lemma 3.4.1 also holds under the weaker hypothesis that R#does not exist for some real R, by relativisation to R. (Indeed, one only needsthat A# does not exist for some set of ordinals A.)Letures 12 and 13Now to prove Theorem 3.4, suppose that ω1 is not inaessible to reals.Thus for some real R, ω1 = ω1 of L[R]. As the real R plays no role in the proofbelow, we will assume that R equals 0. In partiular 0# does not exist andtherefore by Lemma 3.4.1, in a stationary-preserving set-generi extension,
H(ω2) = Lω2

[R] for some real R. For the moment, argue in this extension.As the real R plays no role in the arguments below, we also assume that Requals 0.For any A ⊆ ω1 onsider now the funtion fA : ω1 → ω1 de�ned by
fA(α) = the least β suh that α is ountable in Lβ+1[A ∩ α].Note that by assumption, ω1 = ωL

1 and therefore fA is totally de�ned forevery A. We say that A is faster than B i� fA < fB on a CUB.Lemma 3.4.2. (Ralf Shindler) For any A there is a faster B in a furtherstationary-preserving foring extension.Given this lemma, we prove Theorem 3.4. Set A0 = R0 = ∅. By thelemma there is A1 whih is faster than A0 in a stationary-preserving foringextension. A1, together with a CUB set C1 witnessing that A1 is faster than
A0, an be oded by a real R1 via a  foring; we write A1 = A(R1),
C1 = C(R1). Then R1 satis�es the Π1(H(ω1)) onditionFor all α < ω1, fA(R1)(α) < f∅(α) for all α in the CUB set C(R1).By Σ2(H(ω1)) absoluteness for stationary-preserving forings, there is suha real R1 in the original ground model V . Then the real R1 is faster than thereal R0 = ∅. But we an repeat this, obtaining Rn+1 whih is faster than Rn,for eah n. Thus fRn+1

< fRn on a CUB for eah n, a ontradition.22



Proof of Lemma 3.4.2. The proof is similar to the proof that the reshapingforing is stationary-preserving. Consider the foring P whose onditions arepairs (b, c) where:
c is a ountable losed subset of ω1.
b : max c→ 2.For all α ∈ c, α is ountable in LfA(α)[b ↾ α].Conditions are ordered by: (b0, c0) ≤ (b1, c1) i� c0 end-extends c1 and b0 ∩
max c1 = b1. Any ondition an be extended so as to inrease max c above anygiven ountable ordinal: Given (b, c) there are arbitrary large limit ordinals
α > max c with fA(α) > α. We obtain a ondition by adding α to c andextending b to any b′ of length α so that α is ountable in Lα+1[b

′].Thus if G is P -generi then B = ∪{b | (b, c) ∈ G for some c} is faster than
A, as witnessed by the CUB set C = ∪{c | (b, c) ∈ G for some b}. It remainsonly to show that P is stationary-preserving.Suppose that p = (b, c) ∈ P , X is stationary and σ is a name for a CUB.Let C0 ⊇ C1 be CUB sets suh that:1. If α is in C0 and β is less than α then p is in Lα and every q ≤ p in Lαhas an extension r ∈ Lα suh that r  β∗ ∈ σ for some β∗ between β and α.2. If α is in C1 then fA(α) > α and C0 ∩ α belongs to LfA(α).
C0 is onstruted by hoosing Lγ , γ > ω1, to ontain p, σ, A and taking C0to be {i < ω1 | i = ω1 ∩Mi, where Mi = the Skolem hull of i ∪ {p, σ, A} in
Lγ}. Then C1 is de�ned to be {i < ω1 | i = ω1 ∩Ni, where Ni = the Skolemhull of i ∪ {p, σ, A, γ} in Lγ+ω}.Now hoose α ∈ Lim C1 ∩ X and let 〈γn | n ∈ ω〉 be any inreasing ω-sequene ontained in C1 with supremum α. We indutively de�ne onditions
qn = (bn, cn) of length γn as follows. Set q0 to be the L-least extension of pof length γ0. If qn is de�ned, let q′n = (b′n, c

′
n) be the L-least extension of qnsuh that b′n(γn) = 1 and q′n fores some βn greater than γn to belong to σ;note that by property 1 above, γ′n = (the length of q′n) is less than the leastelement of C0 greater than γn. Let Rn be a real oding the ordinal γn+1 andextend b′n to b′′n of length γ′n + ω by de�ning b′′n(γ′n + k) = Rn(k) for eah

k ∈ ω. Then qn+1 is obtained by setting cn+1 = c′n ∪ {γn+1} and extending23



b′′n to length γn+1, always taking the value 0 at and above γ′n + ω. Note that
qn+1 is a ondition as γn+1 is ountable in Lγn+1+1[bn+1] but fA(γn+1) > γn+1.Let b be the union of the bn's and c the union of the cn's together withthe ordinal α. Then {γ ∈ C0 ∩ [γ0, α) | b(γ) = 1} equals {γn | n ∈ ω} and byproperty 2 above, C0 ∩ α belongs to LfA(α). It follows that α is ountable in
LfA(α)[b], establishing that q = (b, c) is a ondition. As q fores that σ ∩ α isunbounded in α, q also fores that α belongs to σ. Sine α belongs to X, wehave q  X ∩ σ 6= ∅, as desired. 2This ompletes the proof of Theorem 3.Persistene of Σ3(H(ω1)) absolutenessIt is reasonable to onsider Abs(Σ3(H(ω1)),P) provided one imposes thehypothesis that Σ3(H(ω1)) formulas persist for P-generi extensions. Thelatter is equivalent to saying that Abs(Σ2(H(ω1)),P) holds in all P-generiextensions, a form of �two-step absoluteness� for P-foring. We onsider nextsome examples of this.Theorem 6.1. The following are equivalent:1. All set-generi extensions obey Σ2(H(ω1))-absoluteness for further set-generi extensions.2. Every set of ordinals has a #.Proof. (1 → 2) Assume property 1 and we �rst show that 0# exists. If not,then κ+ = κ∗ of L, where κ = ℵω. Let V [G] be a set-generi extension where
κ+ of L = ω1, obtained by ollasping κ to ω. Then for some real R in V [G],
ω1 = ω1 of L[R]. This is a Π2(H(ω1)) property:
ω1 = ω1 of L[R] i�
H(ω1) � ∀α∃S(S is a real in L[R] and S odes α).But this property is false in V [G][H ], where H ollapses ω1 of L[R] to ω. So
Σ2(H(ω1)) absoluteness fails between V [G] and V [G][H ].The same argument shows that R# exists for eah real R. As property 1holds in all set-generi extensions, it follows that in all set-generi extensions,every real has a #, i.e., every set of ordinals has a #.Letures 14 and 1524



(2 → 1) Reall that elements of H(ω1) an be oded by reals, and the setof reals C oding an element of H(ω1) forms a Π1
1 set (i.e., a set of the form

{x | ∀yϕ(x, y)} where x, y vary over reals and ϕ is arithmetial). It followsthat a Σ2(H(ω1)) formula an be translated into a Σ1
3 formula about reals:

∃a ∈ H(ω1)∀b ∈ H(ω1)ϕ(a, b) (ϕ ∆0) i�
∃x ∈ C∀y ∈ Cϕ∗(x, y),where ϕ∗ is arithmetial. As C is Π1

1 the latter formula is Σ1
3. So property 1of the theorem follows from:

(∗) All set-generi extensions obey Σ1
3 absoluteness with respet to furtherset-generi extensions.We will prove (∗) under the assumption that every set has a #, or equiva-lently, that in every set-generi extension, every real has a #.First just assume that every real has a # and let A = {x | ∀y∃zϕ(x, y, z)},

ϕ arithmetial, be a Π1
2 set. Assuming that A is nonempty, we show how tohoose a �anonial� element of A.A tree on a set B is a olletion of �nite sequenes of elements of Blosed under initial segment. If T is a tree on B1 ×B2 × · · · ×Bn, si a �nitesequene from Bi for 1 ≤ i < n and the si's all have the same length, then

T (s1, . . . , sn−1) = {tn | (s1 ↾ l, . . . , sn−1 ↾ l, tn) ∈ T , where l = length of
tn ≤ length of eah si} (and where we identify an n-tuple of sequenes oflength l with a sequene of length l of n-tuples in the natural way). If xi isan ω-sequene from Bi for eah 1 ≤ i < n then T (x1, . . . , xn−1) = ∪{T (x1 ↾

l, . . . , xn−1 ↾ l) | l < ω}.Now B = {(x, y) | ∃zϕ(x, y, z)} is Σ1
1 and therefore there is a tree T on

2 × 2 × ω suh that (x, y) ∈ B i� T (x, y) has an in�nite branh. Then:
x ∈ A i�
∀y T (x, y) has an in�nite branh.Now let κ be an unountable regular ardinal and de�ne the orderings Uκ and
Uκ(x) (x a real) as follows: An element of Uκ is a triple (s, t, f), with s and
t �nite sequenes of 0's and 1's of the same length and f an order-preservingfuntion from (T (s, t)∗, <∗) into κ, where T (s, t)∗ is the �nite set of all �nite25



sequenes in T (s, t) taking values less than Length(s) = Length(t), and where
<∗ is the Kleene-Brouwer order on �nite sequenes of natural numbers: u <∗ vi� u properly extends v or u is less than v in the lexiographi order. Theordering on Uκ is the natural one: (s0, t0, f0) ≤ (s1, t1, f1) i� s0, t0, f0 extend
s1, t1, f1, respetively. For a real x, Uκ(x) denotes the set of pairs (t, f) suhthat for some n, (x ↾ n, t, f) belongs to Uκ.Claim 1. x ∈ A i� Uκ(x) is well-founded.Proof of Claim 1. An in�nite desending sequene through Uκ(x) yields areal y and an order-preserving funtion from (T (x, y), <∗) into κ; it followsthat T (x, y) has no in�nite branh, and therefore x does not belong to A.Conversely, if x does not belong to A, then hoose y suh that T (x, y) hasno in�nite branh, hoose an order-preserving funtion f from the ountablewell-ordering (T (x, y), <∗) into κ and de�ne fn = f ↾ T (x ↾ n, y ↾ n)∗; then
(x ↾ n + 1, y ↾ n + 1, fn+1) is less than (x ↾ n, y ↾ n, fn) in Uκ for eah n, so
(y ↾ n + 1, fn+1) is less than (y ↾ n, fn) in Uκ(x) for eah n; it follows that
Uκ(x) is not well-founded. 2Note that if x belongs to A then the anonial ranking funtion F x on
Uκ(x) is onstrutible from a real, as it is onstrutible from x and T . Nowwe want to hoose a partiular x suh that Uκ(x) is well-founded. For thispurpose we need to ompare ranking funtions on the orderings Uκ(s, t) =
{f | (s ↾ n, t ↾ n, f) ∈ Uκ for some n}. Fix s, t of the same length and let
L∗ denote ∪{L[x] | x a real}. Suppose that F,G ∈ L∗ are funtions from
Uκ(s, t) into the ordinals. We write F ≤∗ G i� from some CUB C ⊆ κ,
C ∈ L∗, F (f) ≤ G(f) for all f ∈ Uκ(s, t) with Range (f) ⊆ C. For any
F,G either F ≤∗ G or G ≤∗ F , sine F,G are onstrutible from reals andtherefore by our assumption that every real has a #, there is a CUB subsetof κ whih forms a set of order-indisernibles relative to F,G. Therefore ≤∗gives a wellordering if we identify F with G when F =∗ G.Given n let t1, t2, . . . , t2n list the 0, 1-sequenes of length n in lexiographiorder. Then de�ne αx

n = 〈β1, . . . , β2n〉, where βi is the rank of F x ↾ Uκ(x ↾

n, ti) in ≤∗.We now de�ne a anonial element of A. Choose x1 to minimize αx
1 , x(0)(in the lexiographi ordering of �nite sequenes of ordinals) for x ∈ A and set

n0 = x1(0). Then hoose x2 to minimize αx
2 , x(1) for x ∈ A whih minimize26



αx
1 , x(0) and set n1 = x2(1). Continue in this way, produing a real x∗ =

〈n0, n1, . . .〉.Claim 2. x∗ ∈ A.Proof of Claim 2. For eah n and t of length n hoose F n(t) with domain
Uκ(x∗ ↾ n, t) so that the ranks of the F n(t) realise αxn

n . Then for some CUB C,the F n(t) restrited to elements of Uκ(x∗ ↾ n, t) with range in C ohere witheah other. It follows that U(x∗) is well-founded, and therefore x∗ belongs to
A. 2Now we are ready to verify (∗) (and therefore property 1 of the theorem),assuming that in every set-generi extension, every real has a #. Supposethat V [G] is a set-generi extension of V and ϕ(x) is a Π1

2 formula with realparameter from V [G]. Suppose that V [G][H ] is a set-generi extension of
V [G] where ϕ(x) holds for some real x. We want to show that ϕ(x) holds in
V [G] for some x in V [G]. By assumption every real in V [G][H ] has a #. Let
κ be greater than the size of the foring that produes H over V [G]. Nowform the ordering Uκ as above in V [G], for the Π1

2 set A = {x | ϕ(x)}. Uκ hasthe same de�nition in V [G][H ] as it has in V [G]. Any ranking funtion on
Uκ(s, t), s, t �nite 0, 1-sequenes of the same length, whih is onstrutiblefrom a real in V [G][H ] is =∗-equivalent to suh a funtion in V [G] (with aCUB C ⊆ κ in V [G] witnessing this), as H is generi over V [G] for a foringof size less than κ.Now in V [G][H ], onsider the set of pairs (s, F ), where s is a �nite 0, 1-sequene and F is a ranking funtion on Uκ(s) onstrutible from a real in
V [G]. Order suh pairs by (s0, F0) ≤ (s1, F1) i� s0 extends s1 and F0 extends
F1 on all (t, f) with Range (f) ⊆ C, for some CUB C ⊆ κ in V [G]. Then in
V [G][H ] this ordering is not well-founded, as Uκ(x) has a ranking funtiononstrutible from a real for some x, and the restrition of this funtion to
Uκ(x ↾ n) is =∗-equivalent to a funtion onstrutible from a real in V [G],witnessed by a CUB C ⊆ κ in V [G]. It follows that this ordering is notwell-founded in V [G], Uκ(x) is well-founded for some real x in V [G] and thegiven Π1

2 formula ϕ(x) holds for some real in V [G], as desired. 2Letures 16 and 1727



Theorem 9. The following are equionsistent:1. Σ3(H(ω1))-absoluteness for set-generi extensions and every set has a #.2. There exists a re�eting ardinal and every set has a #.Proof. We imitate the proof of Theorem 3.1. Suppose that every set hasa # and κ is re�eting. Let V [G] be the generi extension of V obtainedby ollapsing every ordinal less than κ to ω; we show that V [G] witnessesproperty 1. Suppose that ϕ is a Σ3(H(ω1)) formula with parameter from V [G]whih is fored to hold in some set-generi extension of V [G]. First assumethat the parameter in ϕ belongs to V . Then the following Σ2 statementmentioning this parameter holds in V :There is a ardinal δ and a foring P ∈ H(δ) suh that H(δ) � (P  ϕ).By re�etion there is suh a δ, P in H(κ). Let V [g] be P -generi over V ,
g ∈ V [G]; there is suh a g sine the V -power set of P is ountable in
V [G]. Then V [g] satis�es ϕ. Sine V � Every set has a #, ϕ is persistent forset-generi extensions of V and therefore ϕ also holds in V [G]. Sine V [G]also satis�es �Every set has a #�, we are done. If the parameter in ϕ doesnot belong to V , then as in the proof of Theorem 3.1, we fator V [G] as
V [G(< α)][G(≥ α)], where the parameter belongs to V [G(< α)], α < κ.Now assume that 1 holds. We show that ω1 is re�eting in an appropriateinner model where every set has a #.Fat. Suppose that every set has a #. Then there is a smallest inner model
L# in whih every set has a #. Moreover, this inner model has the followingproperty: There is a sequene 〈L#

α | α ∈ Ord〉, suh that:1. For eah α, L#
α is transitive of ordinal height α.2. α ≤ β → L#

α ⊆ L#
β .3. For eah in�nite L#-ardinal θ, L#

θ = H(θ)L#.4. For eah in�nite ardinal θ, 〈L#
α | α < θ〉 is Σ2-de�nable over H(θ).Assuming 1, we now show that κ = ωV

1 is re�eting in L#. Suppose that
L# � ϕ, where ϕ is a Σ2 formula with parameters from L#

κ . We must showthat ϕ is true in L#
κ . Sine ϕ is true in L#, by re�etion it is also true in

L#
θ for some L#-ardinal θ. There is a set-generi extension of V in whih28



θ is ountable. Therefore in some set-generi extension of V the followingformula (with parameters from L#
κ ⊆ H(ω1)

V ) is true:There is a ountable ordinal θ suh that θ is a ardinal of L# and L#
θ � ϕ.This formula is Σ3(H(ω1)) as 〈L#

α | α < ω1〉 is Σ2-de�nable over H(ω1). Byour assumption of Σ3(H(ω1))-absoluteness, the above formula is also true in
V . Therefore there is an ordinal θ less than ωV

1 = κ suh that L#
θ � ϕ and

H(ω1)
V � θ is an L#-ardinal. Then θ really is an L#-ardinal and therefore

L#
θ is Σ1-elementary in L#

κ . As ϕ is Σ2, it follows that L#
κ also satis�es ϕ, asdesired. 2

Σ4(H(ω1))-absoluteness for set-generi extensions is reasonable provided
Σ4(H(ω1)) formulas persist for set-generi extensions, i.e., provided that allset-generi extensions obey Σ3(H(ω1))-absoluteness for further set-generiextensions.Theorem 10. Assume that n is greater than 0. Then the following are equi-onsistent:1. All set-generi extensions obey Σn+2(H(ω1))-absoluteness for further set-generi extensions.2. There exist n strong ardinals.Proof. We �rst show that the onsisteny of 2 implies that of 1.De�nition. Suppose that κ < λ are inaessibles. Then κ is λ-strong i� thereis an elementary embedding j : V → M with ritial point κ suh that
H(λ) ⊆M . And κ is strong i� it is λ-strong for all inaessible λ > κ.Fat. If κ is λ-strong then there is an elementary j : V →M witnessing thissuh that Mκ ⊆ M .We shall need some fats about trees. A tree on a set X is a subset ofSeq(X) = the set of �nite sequenes of elements of X losed under initialsegments. For T a tree on X we let [T ] denote the set of in�nite branhesthrough T , i.e., the set of f ∈ Xω suh that f ↾ n ∈ T for all n. We thinkof a tree on Y × Z as a set of pairs (s, t) ∈ Seq(Y ) × Seq(Z) where s and thave the same length. If T is a tree on Y × Z and s ∈ Seq(Y ) then we set
Ts = {t | (s ↾ Length(t), t) ∈ Y } and for x ∈ Y ω, Tx = ∪{Tx↾n | n ∈ ω}. The29



projetion p[T ] is de�ned by: x ∈ p[T ] i� Tx has an in�nite branh. We saythat p[T ] is Z-Suslin via T .Now we onsider κ-absolute Suslin representations. We say that a set Gis (< κ)-generi over a model M i� G is P -generi over M where M � Phas ardinality less than κ. Suppose that T , U are trees on X × Y , X × Z,respetively. We say that T , U are κ-absolute omplements i� whenever Gis (< κ)-generi over V , we have V [G] � p[T ] = Xω − p[U ]. The tree T is
κ-absolutely omplemented i� there is a U suh that T , U are κ-absoluteomplements.Remark. Note that if p[T ], p[U ] are disjoint in V then they are automatiallydisjoint in any extension of V , by a simple absoluteness argument. Whatabsolute omplementation adds is that the union of p[T ], p[U ] is all of Xω.De�nition. A ⊆ Xω is κ-absolutely Suslin i� A = p[T ] for some κ-absolutelyomplemented tree T . If A is de�ned by the formula ϕ (with parameters),then the pair (A,ϕ) is κ-absolutely Suslin i� A = p[T ] for some κ-absolutelyomplemented tree T with the additional property that p[T ] = {x | ϕ(x)}in all (< κ)-generi extensions. We say that A is absolutely Suslin i� A is
κ-absolutely Suslin for every κ; similarly for (A,ϕ).The proof of Theorem 6.1 (2 → 1) shows:Theorem 10.1. If every set has a # then (A,ϕ) is absolutely Suslin whenever
A ⊆ ωω is the set of reals de�ned by a Σ1

3 formula ϕ (with real parameters).We shall prove:Theorem 10.2. Suppose that there exists a strong ardinal κ, A ⊆ ωω × ωωand (A,ϕ) is absolutely Suslin. Let B = {x | (x, y) ∈ A for some y} and ψthe formula ∃y ∈ ωωϕ(x, y). Then (B,ψ) is absolutely Suslin in V [G], where
G is generi for the Lévy ollapse of 22κ to ω.Now using this, we prove that the onsisteny of 2 implies that of 1.Suppose that κ is the least strong ardinal of V . It follows that V is losedunder #, and therefore by Theorem 10.1, (A,ϕ) is absolutely Suslin when
A is the set of reals de�ned by a Σ1

3 formula ϕ. The same is true for Π1
3.By Theorem 10.2, after ollapsing 22κ to ω, we obtain a model where (B,ψ)30



is absolutely Suslin when B is de�ned by a Σ1
4 formula ψ. In partiular, foreah κ there is a tree Tκ suh that p[Tκ] = {x | ψ(x)} in all (< κ)-generiextensions; this implies Σ1

4-absoluteness in all set-generi extensions, by theabsoluteness of well-foundedness for trees. If there were two strong ardinalsin V , then there is still a strong ardinal in this generi extension, and wean repeat the argument, obtaining a model where Σ1
5-absoluteness holds forset-generi extensions, et. As Σ1

n+3-absoluteness is the same as Σn+2(H(ω1))-absoluteness, we are done. Leture 18Proof of Theorem 10.2. Suppose that A is the projetion of the tree T on
ω×ω×Z, where T has a λ-absolute omplement U and p[T ] = {x | ϕ(x)} inall (< λ)-generi extensions. Let S be the same as the tree T , but regardedas a tree on ω × (ω × Z). So p[S] = {x | (x, y) ∈ p[T ] for some y} = B, and
p[S] equals {x | ∃yϕ(x, y)} in all (< λ)-generi extensions.Claim. Suppose that κ is λ-strong and j : V → M witnesses this, where
Mω ⊆ M . Suppose that T is a tree on ω × Z for some Z. Let G be generiover V for the Lévy ollapse of 22κ to ω. Then in V [G], j(T ) has a λ-absoluteomplement.We prove Theorem 10.2 using this Claim. Applying the Claim to the tree
S, we obtain a λ-absolute omplement for j(S) in V [G], where G is generifor the Lévy ollapse of 22κ to ω. It su�es to show that p[S] = p[j(S)]in V [G][H ] for any (< λ)-generi H , for then S has the same λ-absoluteomplement as j(S). Argue now in V [G][H ]. As p[S] = {x | (x, y) ∈ p[T ] forsome y}, p[j(S)] = {x | (x, y) ∈ p[j(T )] for some y}, it su�es to show that
p[T ] = p[j(T )]. Clearly p[T ] ⊆ p[j(T )], as j sends a branh through T to abranh through j(T ). Conversely, if (x, y) /∈ p[T ], then (x, y) ∈ p[U ] (where
U is a λ-absolute omplement for T ), so (x, y) ∈ p[j(U)]; by elementarity
p[j(U)] and p[j(T )] are disjoint in M , and therefore by absoluteness arereally disjoint. Therefore (x, y) /∈ p[j(T )].To prove the Claim we shall need some fats about measures. For any set
Z, Measκ(Z) denotes the set of κ-additive measures on Z<ω. If κ is ω1 thenwe write Meas(Z) for Measκ(Z). If µ belongs to Meas(Z) then the dimensionof µ, written dim(µ), is the unique n suh that µ(Zn) = 1. If µ, ν ∈ Meas(Z)then we say that µ projets to ν i� dim(ν) ≤ dim(µ) and for A ⊆ Zω:31



ν(A) = µ({u ∈ Zω | u ↾ dim(ν) ∈ A}). If µ projets to ν then there is anatural embedding πν,µ : Ult(V, ν) → Ult(V, µ) obtained by sending [f ]ν to
[f ∗]µ, where f ∗(u) = f(u ↾ dim(ν)) for all u ∈ Zω.A tower of measures on Z is a sequene 〈µn | n < ω〉 suh that µn ∈Meas(Z) has dimension n for eah n, and whenever m ≤ n < ω, µn projetsto µm. If 〈µn | n < ω〉 is a tower of measures then Ult(V, 〈µn | n < ω〉)denotes the diret limit of the Ult(V, µn) via the embeddings πµm,µn. Onean show that Ult(V, 〈µn | n < ω〉) is well-founded i� whenever µx↾n(An) = 1for eah n there exists f suh that f ↾ n ∈ An for eah n.Proof of Claim. There is a tree T ∗ ⊆ T of size κ suh that p[T ] = p[T ∗] in any
(< κ)-generi extension of V (obtained by listing all P , σ where P ∈ H(κ)and σ is a P -name for a real, and for eah suh P , σ putting into T ∗ allelements of Z whih are fored by some ondition in P to belong to the leastbranh through T projeting to σ). We an assume that T ∗ is a tree on ω×κ.In V [G] the set Measκ(κ<ω) is ountable. Let m : ω → j[Measκ(κ<ω)] bean enumeration in V [G] suh that m(e) onentrates on κn for some n ≤ e.Eah measure in j[Measκ(κ<ω)] extends from M to M [G] sine 22κ is lessthan j(κ). Similarly, sine λ ≤ j(κ), these measures extend to M [G][H ]whenever H is (< λ)-generi over M [G]. Notie that sine M ontains H(λ)and Mω ⊆ M , any (< λ)-generi H over V [G] is in fat (< λ)-generi over
M [G] and M [G][H ] is ω-losed in V [G][H ].De�ne the tree S to onsist of all (s, 〈α0 . . . , αn−1〉) suh that:
s ∈ ωn

α0 < j(κ)+For all i < e < n: If m(e) onentrates on j(T ∗)s and m(e) projets to m(i),then αe < πm(i),m(e)(αi).We will show that S is a λ-absolute omplement for j(T ) in V [G]. Let Hbe (< λ)-generi over V [G] and x a real in V [G][H ]; we must show that in
V [G][H ], x ∈ p[j(T )] i� x /∈ p[S]. Note that sine M [G][H ] is ω-losed in
V [G][H ], x belongs to M [G][H ].For eah (s, t) ∈ j(T ∗), onsider the measure Σ(s, t) onentrating on T ∗

sgiven by: A ∈ Σ(s, t) i� t ∈ j(A). Suppose that (x, f) is a branh through32



j(T ∗) in V . Then Ult(V, 〈Σ(x ↾ n, f ↾ n) | n ∈ ω〉) is well-founded: Otherwise,we an hoose An ∈ Σ(x ↾ n, f ↾ n) and gn : An → Ord suh that for eah n,
gn+1(y) < gn(y ↾ n) for y ∈ An+1. But then j(gn+1)(f ↾ n+ 1) < j(gn)(f ↾ n)for eah n, ontradition. It follows that Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈ ω〉)is well-founded. The measures j(Σ(x ↾ n, f ↾ n)) lift fromM toM [G][H ] andtherefore we have the well-foundedness of Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈
ω〉) for any branh (x, f) through j(T ∗) in M [G][H ]; note that any branhthrough j(T ∗) in V [G][H ] in fat belongs toM [G][H ] as the latter is ω-losedin V [G][H ].Suppose now that x ∈ p[j(T )] in V [G][H ]. Then by absoluteness x ∈
p[j(T )] in M [G][H ]. As T and T ∗ have the same projetion in any (< κ)-generi extension of V , it follows that j(T ) and j(T ∗) have the same pro-jetion in any (< λ)-generi extension of M , and therefore x ∈ p[j(T ∗)] in
M [G][H ]. It follows that x /∈ p[S], as the existene of a branh through
Sx implies the ill-foundedness of Ult(M, 〈j(Σ(x ↾ n, f ↾ n)) | n ∈ ω〉), inontradition to the above.Conversely, suppose that x /∈ p[j(T )] in V [G][H ]. Then x /∈ p[j(T ∗)]in V [G][H ] so there is a rank funtion f on T ∗

x . As x belongs to M [G][H ]it follows that f also belongs to M [G][H ]. For m(e) a measure onentra-ting on some j(T ∗)x↾n, let αe equal [f ]m(e), the ordinal represented by fin Ult(M [G][H ], m(e)) (where m(e) has been anonially lifted from M to
M [G][H ]). Then 〈αe | e ∈ ω〉 is an in�nite branh through Sx, as desired. 2Leture 19Strong absolutenessThe absoluteness priniples that we have onsidered so far refer exlu-sively to set-generi extensions. The Lévy-Shoen�eld absoluteness priniple,however, applies to arbitrary extensions. The strong absoluteness prinip-les disussed below are in the tradition of Lévy-Shoen�eld and impose nogeneriity requirement on the extensions onsidered.By extension of V I shall mean a ZFC model V ∗ whih ontains V andhas the same ordinals as V . This is best formalised by regarding V as aountable transitive model of ZFC and allowing V ∗ to range over ountable33



transitive ZFC models whih ontain V and have the same ordinal height as
V .Lévy-Shoen�eld absoluteness. Suppose that ϕ is a Σ1 formula with real para-meters true in an extension of V . Then ϕ is true in V .Any onsistent generalisation of Lévy-Shoen�eld absoluteness must dealwith the following two obstales:Counterexample 1. There is a Σ1 formula with parameter from H(ω2) whihholds in some (set-generi) extension V ∗ of V but not in V .Counterexample 2. There is a Σ1 formula with parameter from H((2ℵ0)+)whih holds in some ( set-generi) extension V ∗ of V but not in V .Counterexample 1 is witnessed by the formula �ωV

1 is ountable�. Coun-terexample 2 is witnessed by the formula �There is a real not in P(ω)V �.Let us say that a Σ1 absoluteness priniple is a priniple asserting theabsoluteness of ertain Σ1 formulas with ertain parameters with respet toertain extensions of V . Our ounterexamples imply that a onsistent Σ1absoluteness priniple must impose some restrition either on the hoie offormulas, the hoie of parameters, the hoie of extensions, or a ombinationof the three.I o�er three proposals. The �rst allows arbitrary parameters, at the ostof restriting the hoie of extensions. The seond allows arbitrary extensions,at the ost of restriting the allowable parameters. And the third weakensthe parameter restritions of the seond proposal, at the ost of restritingthe hoie of formulas in various ways.a. Σ1 absoluteness with arbitrary parameters.A �rst attempt to avoid Counterexample 1 is to require that V and V ∗have the same ω1. But Σ1 absoluteness with parameters from H(ω2) even for
ω1-preserving extensions is also inonsistent: Let A be a stationary subset of
ω1. Then the formula whih asserts that A ontains a CUB subset is Σ1 andtrue in a ardinal-preserving (set-generi) extension; therefore Σ1 absoluten-ess with parameters from H(ω2) for ω1-preserving extensions implies that A34



ontains a CUB subset. But there are disjoint stationary subsets of ω1, givingdisjoint CUB subsets of ω1, a ontradition.Even requiring stationary-preservation at ω1 (i.e, that stationary subsetsof ω1 in V remain stationary in V ∗) results in inonsisteny:Theorem A. There exists an extension V ∗ of V whih is stationary-preservingat ω1 suh that some Σ1 sentene with parameters from H(ω2)
V true in V ∗is false in V .Proof. By a theorem of Beller-David there is an extension V ∗ with the same

ω1 as V ontaining a real R suh that Lα[R] fails to satisfy ZFC for eahordinal α. Moreover, V ∗ is stationary-preserving at ω1. Now suppose thatthe Theorem fails. Then there is suh a real R in V , as this property of Ran be expressed by a Σ1 sentene with parameters R and ω1. In partiular,
ω1 is not inaessible to reals. It is easy to see that the failure of the Theoremimplies that Σ1

3-absoluteness holds between V and its stationary-preservingat ω1 extensions. It then follows that ω1 is inaessible to reals after all,ontradition. 2One ould ontinue to make further restritions on the extension V ∗, suhas stationary-preservation at ω1 together with full ardinal-preservation, inthe hope of ahieving the onsisteny of Σ1(H(ω2)) absoluteness (withoutimposing the requirement that V ∗ be a set-generi extension of V ). But wemust also rekon with Counterexample 2.A possible solution is desribed by the following. I say that an extension
V ∗ of V strongly preserves H(κ) i� the H(κ) of V ∗ equals the H(κ) of V andall ardinals of V less than or equal to Card (H(κ)) = 2<κ remain ardinalsin V ∗.
Σ1 absoluteness with arbitrary parameters. Suppose that κ is an in�nite ar-dinal and a Σ1 formula ϕ with parameters from H(κ+) holds in an extension
V ∗ of V whih strongly preserves H(κ). Then ϕ holds in V .When κ is ω, this is Lévy-Shoen�eld absoluteness. When κ is ω1, thisasserts Σ1(H(ω2)) absoluteness for extensions whih do not add reals andwhih preserve ardinals up to 2ℵ0 . Note that in the presene of ∼ CH,this axiom does rule out the two standard set-forings for destroying thestationarity of a subset of ω1. 35



It is possible that a weaker restrition on the extension V ∗ will su�e,provided we insist only on arbitrary ordinal parameters.
Σ1 absoluteness with arbitrary ordinal parameters. Suppose that ϕ is a Σ1 for-mula with ordinal parameters whih holds in a ardinal-preserving extensionof V . Then it holds in V .Counterexample 1 is avoided as we insist on ardinal-preservation. AndCounterexample 2 is avoided as we only allow ordinal parameters.b. Σ1 absoluteness for arbitrary extensions.Counterexamples 1 and 2 imply that to obtain a onsistent version ofabsoluteness for arbitrary Σ1 formulas with respet to arbitrary extensions,we must impose some restrition on our hoie of parameters. A suitablerestrition is perhaps provided by the following de�nition.De�nition. Let x belong to V and let V ∗ be an extension of V . I say that xis absolute between V and V ∗ i� there is some parameter-free formula whihde�nes x not only in V but also in V ∗.
Σ1 absoluteness for arbitrary extensions. Suppose that V ∗ is an extension of
V and ϕ is a Σ1 formula whose parameters are absolute between V and V ∗.Then if ϕ is true in V ∗ it is also true in V .Counterexample 1 is avoided as ωV

1 may fail to be absolute between V andextensions in whih it is ountable. Counterexample 2 is avoided as P(ω)Vmay fail to be absolute between V and extensions in whih new reals areadded.. Cardinality, o�nality, CUB and powerset absoluteness priniples.Other forms of strong absoluteness result by onsidering speial types of
Σ1 formulas. First I generalise our earlier notion of absolute parameter.De�nition. Suppose that x belongs to V , P is a subset of V and V ∗ is anextension of V . Then x is absolute relative to parameters in P between V and
V ∗ i� there is a formula with parameters from P whih de�nes x not only in
V , but also in V ∗. 36



For ardinality and o�nality we have the following absoluteness prinip-les.Cardinality absoluteness. Suppose that α is an ordinal, V ∗ is an extensionof V and α is absolute relative to bounded subsets of α between V and V ∗.Then if α is ollapsed (i.e., not a ardinal) in V ∗, it is also ollapsed in V .Co�nality Absoluteness. Suppose that α is an ordinal, V ∗ is an extension of
V and α is absolute relative to bounded subsets of α between V and V ∗.Then if α is singular in V ∗, it is also singular in V .For largeness in the sense of the CUB �lter we have:CUB absoluteness. Suppose that X is a subset of a regular ardinal κ, V ∗ isan extension of V and X is absolute relative to ordinals and bounded subsetsof κ between V and V ∗. If o�nalities at most κ are preserved between Vand V ∗ and X ontains a CUB subset in V ∗, then it ontains one in V .The following is a strong absoluteness priniple for the powerset operati-on.Powerset absoluteness. Suppose X is a subset of P (κ), κ an in�nite ardinal,
V ∗ is an extension of V and X is absolute relative to ordinals and subsetsof κ between V and V ∗. If ardinals at most κ are preserved between V and
V ∗ then the ardinality of X in V ∗ equals its ardinality in V .Leture 20The onsisteny strength of strong absoluteness priniplesI do not know if any of the above priniples are provably onsistent relativeto large ardinals. In this subsetion I provide some lower bounds on theironsisteny strength.Theorem B. Σ1 absoluteness with arbitrary parameters implies that the GCHfails at every in�nite ardinal, and for regular unountable κ, there is no κ-Suslin tree.Proof. Suppose that the GCH held at the in�nite ardinal κ. Choose S ⊆ κ+to be a fat-stationary subset of κ+ whih does not ontain a CUB subset. (S37



is fat-stationary i� S ∩ C ontains losed subsets of any ordertype less than
κ+, for eah CUB C ⊆ κ+.) The existene of suh a set is guaranteed by aresult of Krueger. Then the foring P that adds a CUB subset to S usinglosed subsets of S ordered by end-extension has ardinality κ+ and, usingthe fatness of S, is κ+-distributive. It follows thatH(κ+) is strongly preservedby P . But a CUB subset of S witnesses a Σ1 formula with parameter S nottrue in the ground model, in ontradition to our hypothesis.Suppose that there were a κ-Suslin tree T for an unountable regularardinal κ. Then foring with this tree strongly preserves H(κ) and adds awitness to a Σ1 formula with parameter T not witnessed in the ground model,in ontradition to our hypothesis. 2Corollary. Σ1 absoluteness with arbitrary parameters implies the onsistenyof a measurable ardinal κ of Mithell order κ++.To study Σ1 absoluteness with arbitrary ordinal parameters we make useof the following result.Lemma. Suppose that there is no inner model with a measurable ardinal αof Mithell order α. Suppose that κ is a singular ardinal. Then there is afat-stationary S ⊆ κ+ whih is de�nable with parameter κ in Mithell's oremodel K for sequenes of measures and does not ontain a CUB subset in
V .Corollary. The onsisteny strength of Σ1 absoluteness with arbitrary ordinalparameters is at least that of a measurable ardinal κ of Mithell order κ.Proof. Assume Σ1 absoluteness with arbitrary ordinal parameters and thatthere is no inner model with a measurable ardinal α of Mithell order α.Let κ be a singular strong limit ardinal. By the previous lemma, there isa fat-stationary S ⊆ κ+ in K whih does not ontain a CUB subset. Theforing P that adds a CUB subset to S using losed subsets of S orderedby end-extension is κ+-distributive and witnesses a new Σ1 formula withparameter S. But K is not hanged by this foring and therefore there is aformula with ordinal parameters whih de�nes S both in V and in a P -generiextension. Thus to avoid a ounterexample to our absoluteness hypothesis,
P must ollapse a ardinal over V , whih is only possible if the GCH fails at
κ. This gives the onsisteny of a measurable κ of Mithell order κ++. 238



Theorem C. Suppose that Σ1 absoluteness for arbitrary extensions holds.Then there is an inner model with a measurable ardinal α of Mithell order
α.Proof. If there is no inner model with a measurable ardinal α of Mithellorder α, then by the lemma, if κ denotes ℵω, there is a fat-stationary subset
S of κ+ whih is de�nable in K with parameter κ and does not ontain aCUB subset. Then there is a formula whih de�nes S not only in V but alsoin V [G], where G is generi for adding a CUB subset to S. This is a violationof our absoluteness hypothesis. 2Theorem D. Cardinal absoluteness implies that for eah in�nite ardinal κ,
κ+ is greater than (κ+ of HOD).Proof. If G is generi for the Lévy ollapse of κ+ to ω, then HOD is the samein V and in V [G], by the homogeneity of the foring. This ontradits ourabsoluteness hypothesis. 2.Corollary. Cardinal absoluteness implies that there is an inner model with astrong ardinal, and, if there is a proper lass of subtle ardinals, there is aninner model with a Woodin ardinal.It is possible to extend the Corollary to obtain inner models with a properlass of Woodin ardinals ontaining any given set, under the assumption ofardinal absoluteness and a proper lass of subtle ardinals. This is morethan enough to imply Projetive Determinay.Theorem D also holds for o�nality absoluteness, as the latter impliesardinality absoluteness. CUB and powerset absoluteness have at least theonsisteny strength of a measurable ardinal α of Mithell order α using theproof of Theorem C.

39


