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Abstract. Three central combinatorial properties in set theory are the tree property, the approachability

property and stationary reflection. We prove the mutual independence of these properties by showing that

any of their eight Boolean combinations can be forced to hold at 𝜅++, assuming that 𝜅 = 𝜅<𝜅 and there
is a weakly compact cardinal above 𝜅. If in addition 𝜅 is supercompact then we can force 𝜅 to be ℵ𝜔 in

the extension. The proofs combine the techniques of adding and then destroying a non-reflecting stationary

set or a 𝜅++-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the
Prikry-collapse poset for turning a large cardinal into ℵ𝜔 .

1. Introduction

The combinatorial principle �𝜇 was introduced by Jensen [18] and plays a central role in combinatorial
set theory. It exerts influence over the combinatorics of 𝜇+ in several different ways, notably it implies that:

∙ The tree property fails at 𝜇+, i.e. there is a 𝜇+-Aronszajn tree.
∙ The approachability property holds at 𝜇+, i.e. 𝜇+ ∈ 𝐼[𝜇+].
∙ Stationary reflection fails at 𝜇+.

The main result of this paper is that for many values of 𝜇 these three consequences of �𝜇 are “orthogonal”,
in the sense that any of their eight possible Boolean combinations is consistent.

1.1. Square and weak square. The principle �𝜇 states that there is a sequence ⟨𝐶𝛼 : 𝛼 < 𝜇+⟩ such that
𝐶𝛼 is club in 𝛼 with ot(𝐶𝛼) ≤ 𝜇, and 𝛽 ∈ lim(𝐶𝛼) =⇒ 𝐶𝛽 = 𝐶𝛼 ∩ 𝛽, for all 𝛼 and 𝛽. Jensen showed that
if 𝑉 = 𝐿 then �𝜇 holds for all uncountable cardinals 𝜇, and this theorem has been extended to many larger
𝐿-like inner models.

The principle �𝜇 is very often used in inductive constructions of “non-compact” or “non-reflecting” objects
of size 𝜇+. Typically the idea is that we use 𝐶𝛼 to guide the construction at stage 𝛼, and the coherence of
the clubs gives a club set of stages below 𝛼 where we were guided by an initial segment of 𝐶𝛼, guaranteeing
success at stage 𝛼.

The following list of results by Jensen illustrates this theme:

Fact 1. Let �𝜇 hold. Then:

(1) There is a special 𝜇+-Aronszajn tree.
(2) If ♢(𝜇+) holds, then there is a 𝜇+-Souslin tree.
(3) Every stationary subset of 𝜇+ contains a non-reflecting stationary set.

In this paper we will mostly concentrate on the case when the cardinal 𝜇 is regular. The principle �𝜇

has a different flavour for 𝜇 singular; in particular it follows from core model arguments that the failure of
�𝜇 for 𝜇 singular has a very high consistency strength. This contrasts with the case for 𝜇 regular, where
Solovay showed that if 𝜆 > 𝜇 is Mahlo then forcing with the Lévy collapse Coll(𝜇,< 𝜆) produces a model
where �𝜇 fails.

Jensen also introduced a weaker principle �*
𝜇. This states that there is a sequence of nonempty sets

⟨𝒞𝛼 : 𝛼 < 𝜇+⟩ such that |𝒞𝛼| ≤ 𝜇, and every 𝐶 ∈ 𝒞𝛼 is club in 𝛼 with ot(𝐶) ≤ 𝜇 and 𝐶 ∩ 𝛽 ∈ 𝒞𝛽 for all
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𝛽 ∈ lim(𝐶). It is easy to see that if 𝜇 = 𝜇<𝜇 then �*
𝜇 holds, and Jensen showed that �*

𝜇 is equivalent to the
existence of a special Aronszajn tree.

1.2. Stationary reflection and the approachability ideal 𝐼[𝜆]. To build models where a regular cardinal
𝜆 exhibits some amount of stationary reflection, it is important to understand the extent to which forcing
preserves stationary subsets of 𝜆, often in a context where 𝜆 is not a cardinal in the forcing extension. It is
well-known that both 𝜆-closed and 𝜆-cc forcing posets preserve all stationary subsets of 𝜆, and arguments
from the theory of proper forcing imply that countably closed forcing posets preserve all stationary subsets
of 𝜆 ∩ cof(𝜔).

It is natural to ask when 𝜈+-closed forcing posets preserve stationary subsets of 𝜆∩ cof(𝜈), where 𝜈 is an
uncountable regular cardinal with 𝜈+ < 𝜆. In connection with this question, Shelah [24],[25] introduced a
natural ideal 𝐼[𝜆] (the approachability ideal), defined as follows. Whenever 𝑥⃗ = ⟨𝑥𝜂 : 𝜂 < 𝜆⟩ is a sequence
of bounded subsets of 𝜆 and 𝛼 < 𝜆, then say that 𝛼 is approachable with respect to 𝑥⃗ if there is 𝐴 ⊆ 𝛼
unbounded with ot(𝐴) = cf(𝛼), and 𝐴 ∩ 𝛽 ∈ {𝑥𝜂 : 𝜂 < 𝛼} for all 𝛽 < 𝛼. Let 𝑆(𝑥⃗) denote the ordinals
approachable relative to 𝑥⃗. A subset 𝑆 of 𝜆 is in 𝐼[𝜆] if and only if there exists 𝑥⃗ such that almost every
(i.e., club many) 𝛼 ∈ 𝑆 is approachable with respect to 𝑥⃗.

The following are standard facts about 𝐼[𝜆] (see for example [4] for proofs):

∙ 𝐼[𝜆] is a 𝜆-complete normal ideal on 𝜆.
∙ If 𝜆 = 𝜆<𝜆 and 𝑥⃗ enumerates [𝜆]<𝜆, then the set of 𝛼 approachable with respect to 𝑥⃗ is stationary,

and is the largest element (modulo clubs) of 𝐼[𝜆]. More generally if 𝜆 = 𝜆<𝜇 for some regular 𝜇 < 𝜆
and 𝑥⃗ enumerates [𝜆]<𝜇, then the set of 𝛼 ∈ 𝜆∩ cof(𝜇) approachable with respect to 𝑥⃗ is stationary,
and is the largest subset (modulo clubs) of 𝜆 ∩ cof(𝜇) in 𝐼[𝜆].

∙ If 𝜆 = 𝜇+ and �*
𝜇 holds (in particular if 𝜇 = 𝜇<𝜇) then 𝜇+ ∈ 𝐼[𝜇+].

∙ If 𝜆 = 𝜇+ and 𝜇 is regular, then 𝜇+ ∩ cof(< 𝜇) ∈ 𝐼[𝜇+].
∙ If 𝜈 is regular with 𝜈+ < 𝜆, then 𝑆 ∈ 𝐼[𝜆] for some stationary 𝑆 ⊆ 𝜆 ∩ cof(𝜈).
∙ If 𝜈 is regular with 𝜈 < 𝜆 and 𝑆 ∈ 𝐼[𝜆] is stationary with 𝑆 ⊆ 𝜆 ∩ cof(𝜈), then the stationarity of 𝑆

is preserved by 𝜈+-closed forcing posets.

The ideal 𝐼[𝜆] has proved to be intimately connected with many topics in combinatorial set theory, for
example PCF theory [27], saturated ideals [10], and the extent of diamond [22].

1.3. Forcing facts. We shall need some fairly standard forcing facts.

Fact 2. Let 𝜆 be a regular uncountable cardinal. Then there exist a forcing poset PNRSS and a PNRSS-name
for a forcing poset Q̇NRSS such that:

∙ Forcing with PNRSS adds a non-reflecting stationary subset 𝑆 of 𝜆.
∙ Forcing with QNRSS over the PNRSS-generic extension destroys the stationarity of 𝑆.
∙ The poset PNRSS * Q̇NRSS has a 𝜆-closed dense subset.

Conditions in PNRSS are functions 𝑝 from a proper initial segment of 𝜆 to 2, such that for every 𝛼 ≤ dom(𝑝)
of uncountable cofinality there is 𝐶 club in 𝛼 with 𝑝 � 𝐶 identically zero. Conditions in QNRSS are closed
bounded subsets of 𝜆 disjoint from the stationary set added by PNRSS. The 𝜆-closed dense subset consists
of pairs (𝑝, 𝑐) where 𝑐 is a closed bounded subset of 𝜆, dom(𝑝) = max(𝑐), and 𝑝 � 𝑐 is identically zero.

Fact 3 (Kunen, [19]). Let 𝜆 be a regular uncountable cardinal. Then there exist a forcing poset PSouslin and

a PSouslin-name for a forcing poset Q̇Souslin such that:

∙ Forcing with PSouslin adds a 𝜆-Souslin tree 𝑇 .
∙ Forcing with QSouslin over the PSouslin-generic extension adds a branch through 𝑇 .
∙ The poset PSouslin * Q̇Souslin has a 𝜆-closed dense subset.

Conditions in PSouslin are normal trees of successor height less than 𝜆. QSouslin adds branches through
every node of the generic Souslin tree added by PSouslin. The 𝜆-closed dense subset consists of pairs (𝑝, 𝑠)
where 𝑠 is a function that assigns a top node of 𝑝 extending each non-top node of 𝑝.1

1In fact, the approach of [19] was slightly different; Kunen added a homogeneous 𝜆-Souslin tree 𝑇 and then a single cofinal

branch through 𝑇 , which by homogeneity adds branches through each node of 𝑇 . But the idea is the same.
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In both cases, if 𝜆 = 𝜆<𝜆 then we may find a dense subset of P * Q̇ with cardinality 𝜆, and argue that
P * Q̇ is equivalent to Add(𝜆, 1). We also note that:

∙ The forcing poset QSouslin has 𝜆-cc because it is defined from a 𝜆-Souslin tree.
∙ The definitions of the forcing posets PSouslin and PNRSS depend only on the bounded subsets of 𝜆,

so these posets will be computed in the same way by a generic extension which adds no bounded
subsets of 𝜆.

∙ If we force with PNRSS × PSouslin, then we may view the result as a two-step iterated forcing with
PNRSS then PSouslin as defined in the extension by PNRSS, and vice versa. It follows easily that 𝑆 is
a Souslin tree and 𝑇 a non-reflecting stationary set in the extension by PNRSS × PSouslin.

∙ Forcing with PNRSS × PSouslin followed by QNRSS ×QSouslin is equivalent to Add(𝜆, 1).

Fact 4 (Baumgartner, [2]). Let 𝜇 < 𝜆 with 𝜇 regular and 𝜆 weakly compact. Then after forcing with the
Lévy collapse Coll(𝜇,< 𝜆), we have that 𝜆 = 𝜇+ and every stationary subset of 𝜇+ ∩ cof(< 𝜇) reflects at a
point of cofinality 𝜇.

The following fact is crucial to our analysis of the tree and approachability properties.

Fact 5. (Branch Lemmas) Suppose that 𝑇 is a tree of height 𝛿 where 𝛿 has cofinality 𝜅+. Then:

∙ (Silver, [28]): If the levels of 𝑇 have size less than 2𝜅 and P is 𝜅+-closed then P adds no new cofinal
branches through 𝑇 .

∙ (Unger, [30]): If P is a forcing whose square (P)2 has the 𝜅+-cc then P adds no new cofinal branches
through 𝑇 .

2. The main results

Let 𝜇 be a successor cardinal. We will consider three combinatorial assertions about 𝜇+:

TP: The cardinal 𝜇+ has the tree property.
RP: Every stationary subset of 𝜇+ ∩ cof(< 𝜇) reflects at a point of cofinality 𝜇.
AP: The cardinal 𝜇+ has the approachability property, that is 𝜇+ ∈ 𝐼[𝜇+].

Theorem 1. Let 𝜅 be a regular cardinal with 𝜅<𝜅 = 𝜅 and let 𝜇 = 𝜅+. Then (assuming the existence of
suitable large cardinals above 𝜅) for each Boolean combination Φ of TP, AP and RP there exists a generic
extension in which cardinals up to and including 𝜇 are preserved and Φ holds.

Theorem 2. Let 𝜅 be a measurable cardinal, 𝜆 > 𝜅 weakly compact and let 𝜇 = 𝜅+. Then assuming that 𝜅
remains measurable after forcing with Add(𝜅, 𝜆), for each Boolean combination Φ of TP, AP and RP there
exists a generic extension in which cardinals up to and including 𝜇 are preserved, 𝜅 is singular of cofinality
𝜔, and Φ holds.

Remark 1. Theorem 2 slightly understates our results, certain “easy” Boolean combinations can be achieved
starting with an arbitrary singular cardinal 𝜅. We discuss this further below.

2.1. Easy cases: not-TP + AP ± RP. If 2𝜅 = 𝜅+ then 𝜇 = 𝜇<𝜇, so that �*
𝜇 holds and we have not-TP

and AP. The following two arguments work uniformly for all 𝜅, without the need to distinguish the cases
“𝜅 is regular” and “𝜅 is singular”.

I Construction for not-TP + AP + not-RP: Start by forcing with Add(𝜅+, 1), so that in the extension
2𝜅 = 𝜅+. Then force to add a non-reflecting stationary subset of 𝜅++ ∩ cof(𝜔).

I Construction for not-TP + AP + RP: Start with 𝜆 > 𝜅 and 𝜆 weakly compact, and force with Coll(𝜅+, <
𝜆). In the extension 2𝜅 = 𝜅+, 𝜆 = 𝜅++ and every stationary subset of 𝜅++ ∩ cof(≤ 𝜅) reflects to a point of
cofinality 𝜅+.
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2.2. Harder cases: (TP or not-AP) + RP; not-TP + not-AP + not-RP. To arrange the tree
property or failure of the approachability property we will use variants of Mitchell forcing [21]. For the
moment we suppress most of the details, which we defer until Section 3. All our Mitchell forcing variants
will have the following properties in common:

(1) The conditions are defined from cardinal parameters 𝜅 and 𝜆, where 𝜅 < 𝜆 with 𝜅 regular and 𝜆 a
large cardinal.

(2) The conditions are (at least morally) bounded subsets of 𝜆, and the definition of the forcing conditions
and the ordering will not change in a generic extension with the same bounded subsets of 𝜆.

(3) They preserve cardinals up to and including 𝜅+, and force that 2𝜅 = 𝜆 = 𝜅++. See Subsection 3.4.
(4) Assuming that 𝜆 is at least weakly compact, they force that every stationary subset of 𝜆 ∩ cof(≤ 𝜅)

reflects at some point of cofinality 𝜅+. See Subection 3.7.
(5) Assuming that 𝜆 is at least weakly compact, they preserve the tree property at 𝜆. See Subsection 3.6.

To prove Theorem 1 we will assume that 𝜅<𝜅 = 𝜅, and in this case our Mitchell forcing variants will be
𝜅-closed. To prove Theorem 2 we will assume that 𝜅 is measurable, and in this case our Mitchell forcing
variants will singularise 𝜅.

For the purposes of this section we will use forcing posets which we call M0 and M1, whose exact definitions
will be given later in Section 3. They will have in common the properties 1–5 listed above, but an important
difference (see Subsection 3.5) is that:

(1) The poset M0 forces that 𝜆 ∈ 𝐼[𝜆].
(2) Assuming that 𝜆 is at least Mahlo, the poset M1 forces that 𝜆 /∈ 𝐼[𝜆].

I Construction for TP + AP + RP: Start with 𝜆 weakly compact and force with M0.

I Construction for TP + not-AP + RP: Start with 𝜆 weakly compact and force with M1.

I Construction for not-TP + not-AP + RP: Start with 𝜆 weakly compact, do an Easton support iteration
adding a Cohen subset to each inaccessible less than 𝜆, and denote the resulting model by 𝑉 . It is routine
to check 𝜆 is Mahlo in 𝑉 and weakly compact in 𝑉 Add(𝜆,1).

We use the poset PSouslin for adding a 𝜆-Souslin tree from Fact 3. We will force with PSouslin ×M1, and
note that since PSouslin adds no bounded subsets of 𝜆 we may view this as an iteration where we force with
PSouslin and then with M1 as computed in 𝑉 PSouslin .

∙ Since PSouslin embeds into Add(𝜆, 1), 𝜆 is still Mahlo after forcing with PSouslin and hence we have
not-AP in the final model.

∙ Since (M1)2 is 𝜆-cc in 𝑉 PSouslin , it follows from Fact 5 that the Souslin tree added by PSouslin is still
an Aronszajn tree after forcing with M1 and hence we have not-TP in the final model.

∙ Recall that there is QSouslin ∈ 𝑉 PSouslin such that PSouslin * Q̇Souslin is equivalent to forcing with
Add(𝜆, 1). Forcing with QSouslin we obtain the model 𝑉 Add(𝜆,1)×M1 , which we may again view as
the extension by an iteration where we force with Add(𝜆, 1) and then with M1 as computed in
𝑉 Add(𝜆,1). It follows that RP holds in the extension by Add(𝜆, 1) ×M1. Since QSouslin is 𝜆-cc and
adds no bounded subsets of 𝜆, we see readily that RP holds in our final model.

I Construction for not-TP + not-AP + not-RP: We start with 𝜆 Mahlo and force with the product
PNRSS × PSouslin ×M1. This can be construed as an iteration in any order we please, so easily not-TP and
not-RP hold. Also 𝜆 is still Mahlo in the extension by PNRSS × PSouslin, so that in the final model we also
have not-AP.

2.3. Hardest cases: TP ± AP + not-RP. To construct models of TP + not-RP, we will force with
M0 or M1 as in the previous subsection and then add a non-reflecting stationary set by forcing with PNRSS

from Fact 2. In order to see that the tree property holds and that we have the desired control over the
approachability property, we will use some more facts (see Subsection 3.5) about the posets M𝑖, namely that
the models which they produce are “robust under Cohen forcing”. More precisely if 𝜆 is at least weakly
compact then:

∙ In the extension by M0 * Add(𝜆, 1), we have TP + AP.
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∙ In the extension by M1 * Add(𝜆, 1), we have TP + not-AP.

To get TP to hold in the extension by M𝑖 * PNRSS, we need another branch lemma saying that QNRSS

does not add branches through a 𝜆-Aronszajn tree. The proofs are slightly different in the cases where 𝜅 is
regular and 𝜅 is singular (note that if we are proving Theorem 2 then 𝜅 is singular after forcing with M𝑖),
and accordingly we state and prove two versions of the branch lemma.

Both versions use the following standard fact [20]. If 𝛾 and 𝛿 are cardinals with 𝛾 < 𝛿, 𝑈 is a 𝛿-Aronszajn

tree and Q is a forcing poset which adds a branch 𝑏̇ through 𝑈 , then for every condition 𝑞 ∈ Q there are a
level Lev𝛽(𝑈) of 𝑈 and extensions ⟨𝑟𝑖 : 𝑖 < 𝛾⟩ of 𝑞 such that

∙ Each condition 𝑟𝑖 determines where 𝑏̇ meets Lev𝛽(𝑈), say as a node 𝑠𝑖.
∙ For 𝑖 ̸= 𝑗, 𝑠𝑖 ̸= 𝑠𝑗 .

Lemma 1. Let 𝜅<𝜅 = 𝜅 with 2𝜅 = 𝜅++. Let 𝑇 be a non-reflecting stationary subset of 𝜅++, let 𝑈 be a 𝜅++-
tree and let Q be the standard poset to add a club disjoint from 𝑇 . Then Q does not add a cofinal branch in
𝑈 .

Proof. Let 𝑏̇ name for a branch through 𝑈 . Let 𝜃 be a large enough regular cardinal and let 𝑀 ≺ 𝐻𝜃 contain
everything relevant with 𝜅+ + 1 ⊆ 𝑀 , 𝛼 = 𝑀 ∩ 𝜅++ an ordinal of cofinality 𝜅+, and <𝜅𝑀 ⊆ 𝑀 .

Since 𝑇 is non-reflecting we may choose 𝐶 ⊆ 𝛼 a club set of order type 𝜅+ with 𝐶 disjoint from 𝑇 . Now
we build a tree of conditions ⟨𝑞𝑠 : 𝑠 ∈ 2<𝜅⟩ together with a tree of nodes ⟨𝑢𝑠 : 𝑠 ∈ 2<𝜅⟩ such that:

(1) 𝑞𝑠, 𝑢𝑠 ∈ 𝑀 for all 𝑠 ∈ 2<𝜅.

(2) 𝑞𝑠 forces that 𝑢𝑠 ∈ 𝑏̇.
(3) max(𝑞𝑠) ∈ 𝐶.
(4) If 𝑡 is an end-extension of 𝑠 then 𝑞𝑡 ≤ 𝑞𝑠 and 𝑢𝑠 ≤𝑈 𝑢𝑡.
(5) For all 𝑠, 𝑢𝑠a0 and 𝑢𝑠a1 are incomparable in 𝑈 .

The construction is simple: at successor stages we appeal to the “branch splitting” fact above, and for 𝑠
of limit length we define 𝑞𝑠 by forming the union of 𝑞𝑡 for 𝑡 a proper initial segment of 𝑠 and then adding
𝛽 = sup𝑡 max(𝑞𝑡) as the top point: this gives a condition because 𝛽 ∈ 𝐶 and hence 𝛽 /∈ 𝑇 , and it gives an
element of 𝑀 because <𝜅𝑀 ⊆ 𝑀 .

When the construction is done we proceed as follows, noting that every node 𝑢𝑠 is in 𝑀 so lies below
level 𝛼 of 𝑈 . For every 𝑥 ∈ 2𝜅 we choose 𝑞𝑥 such that 𝑞𝑥 ≤ 𝑞𝑥�𝑗 for every 𝑗 < 𝜅, and then extend 𝑞𝑥 to 𝑟𝑥
which decides where 𝑏̇ meets Lev𝛼(𝑈). By construction the nodes 𝑟𝑥 are distinct, and since 2𝜅 = 𝜅++ and
𝑈 is a 𝜅++-tree this is a contradiction. �

Lemma 2. Let 𝜅 be singular of cofinality 𝜔 with 2𝜅 = 𝜅𝜔 = 𝜅++. Let 𝑇 be a non-reflecting stationary subset
of 𝜅++, let 𝑈 be a 𝜅++-Aronszajn tree and let Q be the standard poset to add a club disjoint from 𝑇 . Then
Q does not add a cofinal branch in 𝑈 .

Proof. Let 𝑏̇ name for a branch through 𝑈 , and fix ⟨𝜅𝑛 : 𝑛 < 𝜔⟩ a sequence of regular cardinals which is
increasing and cofinal in 𝜅. We choose 𝑀 , 𝛼 and 𝐶 exactly as in the proof of Lemma 1, except that we drop
the demand that <𝜅𝑀 ⊆ 𝑀 . Let 𝐼 be the tree of finite sequences 𝑠 such that 𝑠(𝑖) ∈ 𝜅𝑖 for 𝑖 < ℓ(𝑠).

We build a tree of conditions ⟨𝑞𝑠 : 𝑠 ∈ 𝐼⟩ together with a tree of nodes ⟨𝑢𝑠 : 𝑠 ∈ 𝐼⟩ such that:

(1) 𝑞𝑠, 𝑢𝑠 ∈ 𝑀 for all 𝑠 ∈ 𝐼.

(2) 𝑞𝑠 forces that 𝑢𝑠 ∈ 𝑏̇.
(3) max(𝑞𝑠) ∈ 𝐶.
(4) If 𝑡 is an end-extension of 𝑠 then 𝑞𝑡 ≤ 𝑞𝑠 and 𝑢𝑠 ≤𝑈 𝑢𝑡.
(5) For all 𝑠, the nodes ⟨𝑢𝑠a𝑖 : 𝑖 < 𝜅ℓ(𝑠)⟩ are pairwise incomparable in 𝑈 .

The construction is basically as before, but we need no closure assumption on 𝑀 since there are no limit
stages. We finish as before by choosing lower bounds 𝑞𝑥 for 𝑥 ∈

∏︀
𝑛 𝜅𝑛 and producing 𝜅𝜔 many distinct

points in Lev𝛼(𝑈).
�
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I Construction for TP + AP + not-RP: Start with 𝜆 weakly compact and force with M0 * PNRSS, where
in distinction to our previous cases we compute PNRSS in the extension by M0. Clearly not-RP holds. Since
AP holds in the extension by M0 and is upwards absolute to models with the same cardinals, AP also holds.
Finally since TP holds in the extension by M0 *Add(𝜆, 1), it follows immediately from Lemma 1 or Lemma 2
that TP holds.

I Construction for TP + not-AP + not-RP: This is similar to the previous case, but this time we force with
M1 * PNRSS. We use that PNRSS preserves stationarity to preserve not-AP.

3. Variants of Mitchell forcing

In this section we will construct the posets M0 and M1 used in proving most of the cases of Theorems 1
and 2. Before we define the relevant forcing posets, a few remarks:

∙ Mitchell [21] started with a large cardinal 𝜆, which will be at least a Mahlo cardinal, and defined a
forcing poset M such that in the final model 𝜔1 is preserved and 2𝜔 = 𝜆 = 𝜔2. The key property
of the poset M is that for many inaccessible 𝛼 < 𝜆, there is an initial segment 𝑉 [𝐺M

𝛼 ] of the final
generic extension 𝑉 [𝐺M] such that 2𝜔 = 𝛼 = 𝜔2 in 𝑉 [𝐺M

𝛼 ], and the “tail forcing” M/𝐺M
𝛼 does not

add any fresh subsets of 𝛼. Recall that a set 𝑑 ⊂ 𝛼 is fresh if for all 𝜂 < 𝛼, 𝑑 ∩ 𝜂 is in the ground
model. The poset M is constructed using the standard Cohen poset Add(𝜔, 𝜆) to blow up the power
set of 𝜔; it is straightforward to replace 𝜔 by a regular cardinal 𝜅 such that 𝜅<𝜅 = 𝜅, and obtain a
version of M which preserves cardinals up to 𝜅+ and forces 2𝜅 = 𝜆 = 𝜅++.

Assuming that 𝜆 is Mahlo, forcing with M yields a model where 𝐼[ℵ2] is a proper ideal; the
key point is that if ⟨𝑥𝜂 : 𝜂 < 𝜆⟩ enumerates [𝜆]ℵ0 in 𝑉 [𝐺M], then there is 𝛼 as above such that
⟨𝑥𝜂 : 𝜂 < 𝛼⟩ enumerates [𝛼]ℵ0 in 𝑉 [𝐺M

𝛼 ], and an unbounded set 𝐸 ⊆ 𝛼 witnessing that 𝛼 ∈ 𝑆(𝑥⃗)
would necessarily be fresh. A very similar argument shows that this version of Mitchell’s model has
no special ℵ2-Aronszajn tree.

To obtain a model with no ℵ2-Aronszajn tree we need to strengthen the assumption on 𝜆. Assum-
ing that 𝜆 is weakly compact, suppose for contradiction that 𝑇 is an ℵ2-Aronszajn tree in 𝑉 [𝐺M].
Using the Π1

1-indescribability of 𝜆, we find 𝛼 as above such that 𝑇 � 𝛼 is an ℵ2-Aronszajn tree in
𝑉 [𝐺M

𝛼 ]. The tail forcing adds a cofinal branch in 𝑇 � 𝛼, but such a branch is fresh, an immediate
contradiction.

∙ With a view to producing a model where both ℵ2 and ℵ3 have the tree property, Abraham [1]
introduced several new ideas. In particular he introduced a wider class of “Mitchell type” forcing
posets, and analysed the properties of these posets by representing them as projections of products
of simpler posets. This gave in particular a new proof that if we build Mitchell’s model with 𝜆 weakly
compact then we obtain a model of the tree property; a key ingredient here is that if 2𝜔 = 𝜔2 then
countably closed forcing cannot add a new branch to an 𝜔2-tree. Another of Abraham’s innovations
was to define versions of Mitchell forcing with “lookahead”; the point here is to do constructions in
which a forcing of Mitchell type which enforces the tree property is followed by further forcing, and
the tree property is preserved.

∙ Cummings and Foreman [5] gave a model in which the tree property holds at 𝜅++ for 𝜅 singular.
Initially 𝜅 and 𝜆 are both large cardinals, and the ground model has been prepared so that forcing
with Add(𝜅, 𝜆) preserves the measurability of 𝜅. In this type of forcing the two-step iteration
Add(𝜅, 𝜆) * Prikry(𝑈) (for 𝑈 some normal measure on 𝜅 in the Add extension) plays the same role
that Add(𝜅, 𝜆) did in Mitchell’s original forcing.

3.1. The forcing. We set up a general framework for defining “Mitchell type” forcing posets. This class
of posets will be flexible enough to prove all the instances of Theorems 1 and 2 in which the tree property
holds or the approachability property fails.

Let 𝜅 and 𝜆 be regular cardinals with 𝜅 = 𝜅<𝜅 < 𝜆. We assume that 𝜆 is Mahlo (and sometimes weakly
compact).

One parameter in the definition of our “Mitchell type” forcing poset will be a poset P for blowing up the
power set of 𝜅 to 𝜆. Specifically, we shall use forcing posets P such that:
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(1) |P| = 𝜆.
(2) P adds 𝜆 subsets of 𝜅.
(3) P preserves 𝜅.
(4) P has the 𝜅+-cc.
(5) There is a filtration ⟨P𝛼 : 𝛼 < 𝜆⟩ and a set 𝐴 ⊆ 𝜆 such that:

(a) 𝐴 contains almost every point in 𝜆 ∩ cof(> 𝜅).
(b) For every 𝛼 ∈ 𝐴, P𝛼 is a complete subposet of P (so that if 𝐺P is P-generic it induces a filter

𝐺P
𝛼 which is P𝛼-generic)

(c) For every 𝛼 ∈ 𝐴:
(i) P/𝐺P

𝛼 × P/𝐺P
𝛼 is 𝜅+-cc in 𝑉 [𝐺P

𝛼].
(ii) 𝑃 (𝜅) ∩ 𝑉 [𝐺P

𝛼] ( 𝑃 (𝜅) ∩ 𝑉 [𝐺P
𝛼* ], where 𝛼* is the successor of 𝛼 in 𝐴.

Examples. The two examples of most interest to us are P = Add(𝜅, 𝜆) and P = Add(𝜅, 𝜆) * Prikry(𝑈)
where 𝑈 is a normal measure on 𝜅. It is routine to check that Add(𝜅, 𝜆) is as required. In the case
of Add(𝜅, 𝜆) * Prikry(𝑈) we define 𝐴 using the fact that for almost every 𝛼 in 𝜆 ∩ cof(> 𝜅) we have


P 𝑈̇ ∩ 𝑉 [𝐺̇P
𝛼] ∈ 𝑉 [𝐺̇P

𝛼]. See Unger’s paper [30] for a careful discussion, including proofs for all the needed
properties of P.

Let B be the regular open algebra of P, and let B𝛼 be the regular open algebra of P𝛼 for 𝛼 ∈ 𝐴. Let 𝜋𝛼 be
the natural projection map from B to B𝛼, and note that if 𝛼 < 𝛽 with 𝛼, 𝛽 ∈ 𝐴 then 𝜋𝛼 � B𝛽 is the natural
projection map from B𝛽 to B𝛼.

Remark 2. For use later, we note that if Q is 𝜅+-closed and 𝐻 is Q-generic then:

∙ By Easton’s lemma, P is 𝜅+-cc in 𝑉 [𝐻].
∙ The antichains of P in 𝑉 [𝐻] all lie in 𝑉 , and so (since elements of B can be understood as suprema

of antichains) B is the Boolean completion of P in 𝑉 [𝐻].
∙ Let 𝛼 ∈ 𝐴. Since 𝑉 and 𝑉 [𝐻] have the same antichains both for P and P𝛼, it is still the case in

𝑉 [𝐻] that P𝛼 is a complete subposet of P. Also B𝛼 is still the Boolean completion of P𝛼 and 𝜋𝛼 is
still the natural projection map.

∙ By Easton’s lemma again, if 𝐺P
𝛼 is P𝛼-generic over 𝑉 then 𝐺P

𝛼 is P𝛼-generic over 𝑉 [𝐻], and the
quotient B/𝐺P

𝛼 is computed in the same way by 𝑉 [𝐺P
𝛼] and 𝑉 [𝐻][𝐺P

𝛼].

∙ Since P𝛼 * (P/𝐺̇P
𝛼 × P/𝐺̇P

𝛼) is 𝜅+-cc, by Easton’s lemma it is 𝜅+-cc in 𝑉 [𝐻], so that P/𝐺P
𝛼 × P/𝐺P

𝛼

is 𝜅+-cc in 𝑉 [𝐻][𝐺P
𝛼].

We use P to define two versions of Mitchell forcing, M0 and M1. They will have the following features in
common:

(1) M𝑖 is a 𝜆-cc forcing poset.
(2) M𝑖 projects to P, and if 𝐺M𝑖 is M𝑖-generic then 𝑃 (𝜅) ∩ 𝑉 [𝐺M𝑖 ] = 𝑃 (𝜅) ∩ 𝑉 [𝐺P] where 𝐺P is the

projected P-generic filter.
(3) M𝑖 preserves cardinals up to and including 𝜅+, and forces that 2𝜅 = 𝜆 = 𝜅++.
(4) If 𝜆 is weakly compact then M𝑖 preserves the tree property at 𝜆, and forces that every stationary

subset of 𝜆 ∩ cof(≤ 𝜅) reflects at a point of cofinality 𝜅+.
(5) Conditions in M𝑖 have three coordinates: the first coordinate is drawn from P and is responsible for

blowing up the power set of 𝜅, the second coordinate is responsible for collapsing cardinals between
𝜅+ and 𝜆, while the third coordinate is responsible for ensuring that certain combinatorial facts hold
in the extension by M𝑖 * Add(𝜆, 1).

The key difference between the posets M𝑖 is in the way the approachability ideal 𝐼[𝜆] look in the corre-
sponding generic extensions. In the extension by M0, 𝜆 ∈ 𝐼[𝜆], while in the extension by M1 we will have
that 𝐴 is stationary and 𝐴 /∈ 𝐼[𝜆].

3.2. The forcing poset M0: Formally we will define M0 by giving an inductive definition of M0 � 𝛽 for
𝛽 ∈ 𝐴 ∪ {𝜆}, and then setting M0 = M0 � 𝜆.

Conditions in M0 � 𝛽 have the form (𝑏, 𝑞, 𝑟) where:
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(1) 𝑏 ∈ B𝛽 , 𝑏 ̸= 0.
(2) dom(𝑞) ⊆ 𝐴 ∩ 𝛽, and |dom(𝑞)| ≤ 𝜅.

(3) 𝑞(𝛼) is a P𝛼-name for a condition in Coll(𝜅+, 𝛼)𝑉
P𝛼

.
(4) dom(𝑟) ⊆ 𝐴 ∩ 𝛽, and dom(𝑟) is an Easton set of regular cardinals.

(5) 𝑟(𝛼) is a M0 � 𝛼-name for a condition in Add(𝛼, 1)𝑉
M0�𝛼

.

Conditions in M0 � 𝛽 are ordered as follows: (𝑏′, 𝑞′, 𝑟′) ≤ (𝑏, 𝑞, 𝑟) if and only if:

(1) 𝑏′ ≤ 𝑏 in B𝛽 .
(2) dom(𝑞) ⊆ dom(𝑞′), and 𝜋𝛼(𝑏′) 
 𝑞′(𝛼) ≤ 𝑞(𝛼) for all 𝛼 ∈ dom(𝑞).
(3) dom(𝑟) ⊆ dom(𝑟′), and (𝜋𝛼(𝑏′), 𝑞′ � 𝛼, 𝑟′ � 𝛼) 
 𝑟′(𝛼) ≤ 𝑟(𝛼) for every 𝛼 ∈ dom(𝑟).

3.3. The forcing poset M1: Let 𝐴* be the set of successor points in 𝐴. We define M1 exactly the same as
M0 except that in (2), 𝐴 is replaced by 𝐴*. More precisely:

Conditions in M1 � 𝛽 have the form (𝑏, 𝑞, 𝑟) where:

(1) 𝑏 ∈ B𝛽 , 𝑏 ̸= 0.
(2) dom(𝑞) ⊆ 𝐴* ∩ 𝛽, and |dom(𝑞)| ≤ 𝜅.

(3) 𝑞(𝛼) is a P𝛼-name for a condition in Coll(𝜅+, 𝛼)𝑉
P𝛼

.
(4) dom(𝑟) ⊆ 𝐴 ∩ 𝛽, and dom(𝑟) is an Easton set of regular cardinals.

(5) 𝑟(𝛼) is a M1 � 𝛼-name for a condition in Add(𝛼, 1)𝑉
M1�𝛼

.

The ordering is exactly as for M0.
Let 𝛼 ∈ 𝐴 be regular and let 𝛼* be the successor of 𝛼 in 𝐴. It is instructive to compare M𝑖 � 𝛼 and M𝑖 � 𝛼*

for 𝑖 = 0 and 𝑖 = 1. In the case 𝑖 = 0, the extension by M0 � 𝛼* is obtained from the extension by M0 � 𝛼
as follows: we are essentially forcing with the product of P𝛼*/𝐺P

𝛼, Coll(𝜅+, 𝛼)𝑉 [𝐺P
𝛼] and Add(𝛼, 1)𝑉 [𝐺M0

𝛼 ]. In
the case 𝑖 = 1 the “collapse” factor is missing.

For the non-approachability argument for M1 it will be helpful to make two further assumptions about
the set 𝐴 (easily obtained by thinning): We require that successor points of 𝐴 are inaccessible (recall that
we are assuming that 𝜆 is at least Mahlo and therefore a limit of inaccessibles) and also that for any 𝛼 in
𝐴, 𝑃 (𝜅) ∩ 𝑉 [𝐺P

𝛽 ] ( 𝑃 (𝜅) ∩ 𝑉 [𝐺P
𝛼] for any ordinal 𝛽 < 𝛼. This will ensure that the forcings M𝑖 � 𝛼* preserve

the regularity of 𝛼* and force 2𝜅 = 𝛼* for successor elements 𝛼* of 𝐴.

3.4. Common properties of M0 and M1: The forcing posets M0 and M1 are very similar to forcing posets
defined by Abraham [1] and Cummings and Foreman [5]. Accordingly we omit some proofs and refer the
reader to those papers.

The following lemma is straightforward:

Lemma 3. |M𝑖| = 𝜆, and M𝑖 has the 𝜆-Knaster property. �

We will use various projection maps in our arguments. Many of the facts about projections that we will
need hinge on an easy general fact about two-step iterated forcing.

Lemma 4 (Laver). Let A * Ḃ be a two-step iteration. If (𝑎1, 𝑏̇1) ≤ (𝑎0, 𝑏̇0) then there is an A-name 𝑏̇*1 such

that 
A 𝑏̇*1 ≤ 𝑏̇0 and 𝑎1 
 𝑏̇1 = 𝑏̇*1 (so that the conditions (𝑎1, 𝑏̇1) and (𝑎1, 𝑏̇
*
1) are equivalent in A * Ḃ).

Proof. By the Maximum Principle we find a name 𝑏̇*1 for the condition in B which is the interpretation of 𝑏̇1
by 𝐺A when 𝑎1 ∈ 𝐺A, and is the interpretation of 𝑏̇0 if 𝑎1 /∈ 𝐺A and 𝑎0 ∈ 𝐺A. Otherwise, let 𝑏̇*1 name the
empty condition. �

Laver defined a “term forcing” 𝒜(A, Ḃ), where the conditions are A-names for elements of B ordered by

𝑏̇1 ≤ 𝑏̇0 ⇐⇒ 
A 𝑏̇1 ≤ 𝑏̇0. It follows from Lemma 4 that the identity map is a projection from A ×𝒜(A, Ḃ)

to A * Ḃ. Foreman [9] gave a detailed discussion of the properties of term forcing.
Following Abraham [1] we analyse the posets M𝑖 using various term forcings and projections. For 𝑖 ∈ {0, 1}

and 𝑎 ⊆ {0, 1, 2} let M𝑎
𝑖 be the set of conditions in M𝑖 which are trivial at coordinates outside 𝑎, where the

trivial value is 1B on coordinate zero and the empty function 0 on coordinates 1 and 2. We order M𝑎
𝑖 with the
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ordering inherited from M𝑖. In an abuse of notation we omit parentheses and commas in the superscripts,

so that M12
0 is shorthand for M{1,2}

0 .
For example M2

𝑖 can be viewed as an Easton support product of increasingly closed term forcings, while
M1

𝑖 is essentially a 𝜅-support product of 𝜅+-closed term forcings. In particular M2
𝑖 is min(𝐴)-closed and M1

𝑖

is 𝜅+-closed. Note that M0
𝑖 ≃ P.

We summarise the various projection facts that we will need in a lemma.

Lemma 5. Let M𝑖 and M𝑎
𝑖 be as defined above. Then:

(1) The map ((𝑏, 𝑞, 0), (1, 0, 𝑟)) ↦→ (𝑏, 𝑞, 𝑟) is a projection from M01
𝑖 ×M2

𝑖 to M𝑖.
(2) The map ((𝑏, 0, 0), (1, 𝑞, 0)) ↦→ (𝑏, 𝑞, 0) is a projection from M0

𝑖 ×M1
𝑖 to M01

𝑖 .
(3) The map ((𝑏, 0, 0), (1, 𝑞, 0), (1, 0, 𝑟)) ↦→ (𝑏, 𝑞, 𝑟) is a projection from M0

𝑖 ×M1
𝑖 ×M2

𝑖 to M𝑖.
(4) The map (𝑏, 𝑞, 𝑟) ↦→ (𝑏, 𝑞, 0) is a projection from M𝑖 to M01

𝑖 .
(5) The map (𝑏, 𝑞, 0) ↦→ (𝑏, 0, 0) is a projection from M𝑖 to M0

𝑖 .
(6) The map (𝑏, 𝑞, 𝑟) ↦→ (𝜋𝛼(𝑏), 𝑞 � 𝛼, 𝑟 � 𝛼) is a projection from M𝑖 to M𝑖 � 𝛼.
(7) The map (𝑏, 𝑞, 𝑟) ↦→ ((𝜋𝛼(𝑏), 𝑞 � 𝛼, 𝑟 � 𝛼), 𝑟(𝛼)) is a projection from M𝑖 to M𝑖 � 𝛼 * ˙Add(𝛼, 1).

(8) For 𝑖 = 0, the map (𝑏, 𝑞, 𝑟) ↦→ ((𝜋𝛼(𝑏), 𝑞(𝛼)) is a projection from M𝑖 to P𝛼 * Coll(𝜅+, 𝛼)𝑉
P𝛼

for all
𝛼 ∈ 𝐴, while for 𝑖 = 1 the same map is a projection for all 𝛼 ∈ 𝐴*.

Proof. We give a proof only for the first projection fact, the second is similar and the remainder are completely
straightforward. The given map is clearly order-preserving, and maps the weakest condition to the weakest
condition. To verify that it is a projection, let (𝑏′, 𝑞′, 𝑟′) ≤ (𝑏, 𝑞, 𝑟) in M𝑖. Appealing to Lemma 4, define 𝑟*

such that (1, 0, 𝑟*) ∈ M2
𝑖 as follows: dom(𝑟*) = dom(𝑟′), 𝑟*(𝛼) is a term such that 
 𝑟*(𝛼) ≤ 𝑟(𝛼) for all

𝛼 ∈ dom(𝑟) and (𝜋𝛼(𝑏′), 𝑞′ � 𝛼, 𝑟′ � 𝛼) 
 𝑟*(𝛼) = 𝑟′(𝛼) for all 𝛼 ∈ dom(𝑟′). Now (𝑏′, 𝑞′, 0) ≤ (𝑏, 𝑞, 0) in M01
𝑖 ,

(1, 0, 𝑟*) ≤ (1, 0, 𝑟) in M2
𝑖 , and (𝑏′, 𝑞′, 𝑟*) ≤ (𝑏′𝑞′, 𝑟′) in M𝑖. �

Using the various projection facts and Easton’s Lemma we get an important conclusion:

Lemma 6. All 𝜅-sequences of ordinals from 𝑉 [𝐺M𝑖 ] lie in 𝑉 [𝐺P].
In particular, (by the 𝜅+-cc of P) every set of ordinals of size 𝜅 in 𝑉 [𝐺M𝑖 ] is covered by a set of size 𝜅 in

𝑉 . �

As a consequence M𝑖 preserves 𝜅 and 𝜅+. Since there is a projection from M𝑖 to P𝛼 * Coll(𝜅+, 𝛼)𝑉
P𝛼

for
all 𝛼 ∈ 𝐴*, M𝑖 collapses all cardinals between 𝜅+ and 𝜆, while 𝜆 is preserved by the 𝜆-cc. The upshot is
that 2𝜅 = 𝜅++ = 𝜆 after forcing with M𝑖.

Suppose that 𝛼 ∈ 𝐴 is an inaccessible limit point of 𝐴. Then M𝑖 � 𝛼 preserves the regularity of 𝛼, as by
the above, the forcing M𝑖 � 𝛼 is the projection of the product of M2

𝑖 � 𝛼, an Easton product which preserves
cofinalities and the inaccessibility of 𝛼, and M01

𝑖 � 𝛼, which is 𝛼-cc forcing after forcing with M2
𝑖 � 𝛼. We

also have 2𝜅 = 𝛼 in the extension by M𝑖 � 𝛼. If 𝛼* is the least element of 𝐴 greater than 𝛼, then M0 � 𝛼*

forces 2𝜅 = 𝛼* = 𝜅++ as it collapses 𝛼, but M1 � 𝛼* forces that 2𝜅 = 𝛼* is a regular cardinal greater than
𝜅++ = 𝛼, as it does not collapse 𝛼.

Let 𝐺M𝑖 be M𝑖-generic and let 𝐺M𝑖
𝛼 be the induced generic object for M𝑖 � 𝛼. We wish to argue that

M𝑖/𝐺
M𝑖
𝛼 is equivalent to a forcing poset with a similar definition to M𝑖, computed in 𝑉 [𝐺M𝑖

𝛼 ]. The argument
is very similar to the standard argument that a final segment of an iterated forcing poset can itself be viewed
as an iterated forcing poset [3], so we have omitted some details about translation of names.

Working in 𝑉 [𝐺M𝑖
𝛼 ], we define a poset N𝑖,𝛼 as follows: conditions are triples (𝑏, 𝑞, 𝑟) where

(1) 𝑏 ∈ B/𝐺P
𝛼, 𝑏 ̸= 0.

(2) dom(𝑞) ⊆ 𝐴 ∖ 𝛼 (if 𝑖 = 0) or dom(𝑞) ⊆ 𝐴* ∖ 𝛼 (if 𝑖 = 1), and |dom(𝑞)| ≤ 𝜅.

(3) 𝑞(𝜂) is a P𝜂/𝐺
P
𝛼-name for a condition in Coll(𝜅+, 𝜂)𝑉

P𝜂
.

(4) dom(𝑟) ⊆ 𝐴 ∖ 𝛼, and dom(𝑟) is an Easton set of regular cardinals.

(5) 𝑟(𝜂) is a M𝑖 � 𝜂/𝐺M𝑖
𝛼 -name for a condition in Add(𝜂, 1)𝑉

M𝑖�𝜂
.

There is a natural order-preserving map from M𝑖 to M𝑖 � 𝛼 * Ṅ𝑖,𝛼; a condition (𝑏, 𝑞, 𝑟) is mapped to the

pair with first entry (𝜋𝛼(𝑏), 𝑞 � 𝛼, 𝑟 � 𝛼) and second entry (𝑏̇𝛼, 𝑞
′ � [𝛼, 𝜆), 𝑟′ � [𝛼, 𝜆)), where 𝑏̇𝛼 names the
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image of 𝑏 in the canonical map from B to B/𝐺P
𝛼 and 𝑞′(𝜂), 𝑟′(𝜂) are appropriately translated version of the

names 𝑞(𝜂), 𝑟(𝜂).
The key point is that this order-preserving map has a dense image. The only potential issue is that in a

M𝑖 � 𝛼-name for a condition in N𝑖,𝛼, the supports of the 𝑞-part and the 𝑟-part may not lie in 𝑉 . However:

(1) Since every set of size 𝜅 in 𝑉 [𝐺M𝑖
𝛼 ] is covered by a set of size 𝜅 in 𝑉 , we may assume that the support

of the 𝑞-part does lie in 𝑉 .
(2) Since M𝑖 � 𝛼 has size less than the least inaccessible limit point of 𝐴 ∖ 𝛼, every Easton subset of

𝐴 ∖ 𝛼 in 𝑉 [𝐺M𝑖
𝛼 ] is covered by an Easton set in 𝑉 , so we may also assume that the support of the

𝑟-part lies in 𝑉 .

The rest of the argument is routine.
The poset N𝑖,𝛼 is susceptible to the same kind of product analysis as M𝑖. In particular, using the fact

that N2
𝑖,𝛼 is 𝛼-closed and 𝛼 = 𝜅++, we get that every 𝜅+-sequence of ordinals in 𝑉 [𝐺M𝑖 ] is in the generic

extension of 𝑉 [𝐺M𝑖
𝛼 ] by N01

𝑖,𝛼.
We record some technical facts for use later:

Lemma 7. P/𝐺P
𝛼 × P/𝐺P

𝛼 is 𝜅+-cc in 𝑉 [𝐺M𝑖
𝛼 ], and also in the extension of 𝑉 [𝐺M𝑖

𝛼 ] by N1
𝑖,𝛼 × N2

𝑖,𝛼.

Proof. By the projection analysis, we can embed 𝑉 [𝐺M𝑖
𝛼 ] in the extension of 𝑉 [𝐺P

𝛼] by the poset M1
𝑖,𝛼×M2

𝑖,𝛼,

which is 𝜅+-closed in 𝑉 . By Remark 2, P/𝐺P
𝛼×P/𝐺P

𝛼 is 𝜅+-cc in this extension, hence it is 𝜅+-cc in 𝑉 [𝐺M𝑖
𝛼 ].

By Easton’s lemma it is still 𝜅+-cc in the extension of 𝑉 [𝐺M𝑖
𝛼 ] by the 𝜅+-closed forcing poset N1

𝑖,𝛼×N2
𝑖,𝛼. �

We now analyse the status of AP, TP and RP in the extensions by M𝑖 and M𝑖 * ˙Add(𝜆, 1). In the case
of TP and RP, the main point is to show that (assuming that 𝜆 is weakly compact) TP and RP hold in the

extension M𝑖 * ˙Add(𝜆, 1). Easy arguments will then show that these properties also hold in the extension by
M𝑖.

3.5. Approachability. We are finally ready to analyse the approachability ideal 𝐼[𝜆] in 𝑉 [𝐺M𝑖 ]. By a result
of Shelah [26] 𝜅++ ∩ cof(≤ 𝜅) ∈ 𝐼[𝜅++], so the only relevant question is about 𝜆 ∩ cof(𝜅+). We note that
since 2𝜅 = 𝜆 there is a maximal stationary subset 𝑆 of 𝜆 ∩ cof(𝜅+) that lies in 𝐼[𝜆], which can be obtained
as follows: enumerate [𝜆]≤𝜅 as 𝑎⃗ = ⟨𝑎𝜁 : 𝜁 < 𝜆⟩, and define 𝑆 = 𝑆(⃗𝑎) to be the stationary set of points
𝛼 ∈ 𝜆 ∩ cof(𝜅+) such that there is 𝐸 ⊆ 𝛼 a cofinal set of order type 𝜅+ with 𝐸 ∩ 𝜂 ∈ {𝑎𝜁 : 𝜁 < 𝛼} for all
𝜂 < 𝛼. The set 𝑆 is well-defined modulo the club filter, and every subset of 𝜆 ∩ cof(𝜅+) in 𝐼[𝜆] is contained
in 𝑆 modulo clubs.

It will be convenient to organise the definition of 𝑆 differently. By Lemma 6, all elements of [𝜆]≤𝜅 lie in
𝑉 [𝐺P], so we assume that the enumeration ⟨𝑎𝜁 : 𝜁 < 𝜆⟩ lies in 𝑉 [𝐺P]. It follows from 𝜅+-cc that for almost
every 𝛼 of cofinality 𝜅+, {𝑎𝜁 : 𝜁 < 𝛼} = [𝜆]≤𝜅 ∩ 𝑉 [𝐺P

𝛼], and of course we also have that almost every such
𝛼 is in 𝐴. So we may as well redefine 𝑆 as a subset of 𝐴, namely 𝑆 is the set of 𝛼 ∈ 𝐴 such that there is
𝐸 ⊆ 𝛼 a cofinal set of order type 𝜅+ with 𝐸 ∩ 𝜂 ∈ 𝑉 [𝐺P

𝛼] for all 𝜂 < 𝛼. This definition is equivalent modulo
clubs to the previous one.

We recall that in the generic extension 𝑉 [𝐺M0 ], for every 𝛼 ∈ 𝐴 the forcing adds a Coll(𝜅+, 𝛼)𝑉 [𝐺P
𝛼]-generic

object. This gives a cofinal map from 𝜅+ to 𝛼 with every initial segment in 𝑉 [𝐺P
𝛼], whose range will serve

as a witness that 𝛼 ∈ 𝑆. So 𝑆 = 𝐴 and it follows easily that 𝜆 ∈ 𝐼[𝜆].

We now consider the situation in 𝑉 [𝐺M1 ], where we will argue (assuming that 𝜆 is Mahlo) that there is a
stationary subset of 𝐴 which is disjoint from 𝑆, and hence 𝜆 /∈ 𝐼[𝜆].

Let 𝐵 be the set of inaccessibles in 𝐴 which are limit points of 𝐴.
Recalling our background assumption that 𝜆 is Mahlo, we see that 𝐵 is stationary in the ground model

𝑉 , and since M1 is 𝜆-cc we also have that 𝐵 is stationary in 𝑉 [𝐺M1 ]. Recall that for 𝛼 in 𝐵, 2𝜅 = 𝜅++ = 𝛼
in the extension by M𝑖 � 𝛼 but if 𝛼* is the 𝐴-successor of 𝛼, then 2𝜅 = 𝛼* is a regular cardinal greater than
𝛼 = 𝜅++ in the extension by M1 � 𝛼*.

Lemma 8. The stationary set 𝐵 is disjoint from 𝑆.
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Proof. If 𝛼 ∈ 𝐵 ∩ 𝑆 then by definition there is 𝐸 ⊆ 𝛼 a cofinal set of order type 𝜅+ with 𝐸 ∩ 𝜂 ∈ 𝑉 [𝐺P
𝛼] for

all 𝜂 < 𝛼. Let 𝑔 enumerate 𝐸 in increasing order, so that 𝑔 is a cofinal map from 𝜅+ to 𝛼 such that each of
its proper initial segments is in 𝑉 [𝐺P

𝛼].

Note that since 𝛼 = (𝜅++)𝑉 [𝐺M1�𝛼], 𝑔 does not belong to the model 𝑉 [𝐺M1 � 𝛼]. But in fact 𝛼 is also
regular in the model 𝑉 [𝐺M1 � 𝛼*], where 𝛼* is the 𝐴-successor to 𝛼, and in this model 2𝜅 = 𝛼* is a regular
cardinal greater than 𝛼. The function 𝑔 is added over 𝑉 [𝐺M1 � 𝛼*] by the forcing poset N1,𝛼* , which by the
projection analysis from Subsection 3.4 is the projection of the product of a forcing whose square is 𝜅+-cc
with a forcing which is 𝜅+-closed. But then by Fact 5, this product could not add 𝑔, else it would add a new
branch to the tree 2<𝛼 as computed in 𝑉 [𝐺M1 � 𝛼]. �

As we mentioned above, for technical reasons we also need to understand the status of AP in the extension

by M𝑖 * ˙Add(𝜆, 1). This is straightforward, because the enumeration of the bounded subsets of 𝜆 (which we
used to compute the maximum element of 𝐼[𝜆]) is still an enumeration of all bounded subsets after forcing
with Add(𝜆, 1), and Add(𝜆, 1) is 𝜆-closed so that it preserves stationary subsets of 𝜆.

It follows readily that AP holds in the extension by M0 * ˙Add(𝜆, 1) and fails in the extension by M1 *
˙Add(𝜆, 1).

3.6. The tree property. Let 𝜆 be weakly compact and let 𝑔 be Add(𝜆, 1)-generic over 𝑉 [𝐺M𝑖 ]. We claim
that 𝜆 has the tree property in 𝑉 [𝐺M𝑖 * 𝑔]. Let 𝑇 ∈ 𝑉 [𝐺M𝑖 * 𝑔] be a 𝜆-Aronszajn tree. Since 𝜆 is Π1

1-
indescribable, by standard arguments there is an inaccessible cardinal 𝛼 ∈ 𝐴 such that 𝑇 � 𝛼 ∈ 𝑉 [𝐺M𝑖 �
𝛼 * 𝑔 � 𝛼] and 𝑇 � 𝛼 is an 𝛼-Aronszajn tree in 𝑉 [𝐺M𝑖 � 𝛼 * 𝑔 � 𝛼].

Clearly 𝑇 � 𝛼 has a branch in 𝑉 [𝐺M𝑖 * 𝑔], and since 𝑔 is generic for 𝜆-closed forcing it has a branch in
𝑉 [𝐺M𝑖 ]. Let N𝑖,𝛼 be the quotient forcing from Subsection 3.4, so that we may view 𝑉 [𝐺M𝑖 ] as an N𝑖,𝛼-generic
extension of 𝑉 [𝐺M𝑖 � 𝛼]. Note that Add(𝛼, 1) appears as part of the first stage of N𝑖,𝛼, so we may view
𝑉 [𝐺M𝑖 ] as an N𝑖,𝛼/𝑔 � 𝛼-generic extension of 𝑉 [𝐺M𝑖 � 𝛼 * 𝑔 � 𝛼].

By the projection argument from Subsection 3.4, N𝑖,𝛼 can be viewed as the projection of a product
N0

𝑖,𝛼 × N1
𝑖,𝛼 × N2

𝑖,𝛼. Now N2
𝑖,𝛼 is a product whose first component is Add(𝛼, 1), so easily N𝑖,𝛼/𝑔 � 𝛼 can be

viewed as the projection of N0
𝑖,𝛼 × N1

𝑖,𝛼 × N2
𝑖,𝛼/𝑔 � 𝛼.

We work in 𝑉 [𝐺M𝑖 � 𝛼 * 𝑔 � 𝛼]. Note that N1
𝑖,𝛼 is 𝜅+-closed and N2

𝑖,𝛼/𝑔 is 𝛼*-closed where 𝛼* is the

successor of 𝛼 in 𝐴. What is more N0
𝑖,𝛼 ≃ P/𝐺P � 𝛼 and the square of this poset is 𝜅+-cc in the extension by

N1
𝑖,𝛼 ×N2

𝑖,𝛼. Thus it follows from Fact 5 that N0
𝑖,𝛼 ×N1

𝑖,𝛼 ×N2𝑖,𝛼/𝑔 � 𝛼 cannot add a branch through 𝑇 � 𝛼,
yielding the desired contradiction.

Finally, since Add(𝜆, 1) is 𝜆-closed, Fact 5 entails that TP also holds in the extension by M𝑖.

3.7. Reflection. The arguments for RP are quite similar to those for TP. Let 𝜆 be weakly compact, let 𝑔
be Add(𝜆, 1)-generic over 𝑉 [𝐺M𝑖 ], and let 𝑆 ∈ 𝑉 [𝐺M𝑖 * 𝑔] with 𝑆 ⊆ 𝜆 ∩ cof(≤ 𝜅). We claim that 𝑆 reflects
to a point of cofinality 𝜅+. Since 𝜆 is Π1

1-indescribable there is an inaccessible cardinal 𝛼 ∈ 𝐴 such that
𝑆 ∩ 𝛼 ∈ 𝑉 [𝐺M𝑖 � 𝛼 * 𝑔 � 𝛼] and 𝑆 ∩ 𝛼 is stationary in 𝑉 [𝐺M𝑖 � 𝛼 * 𝑔 � 𝛼].

Arguing as in the last subsection, it will suffice to show that 𝑆 ∩ 𝛼 remains stationary in the extension
by N0

𝑖,𝛼 × N1
𝑖,𝛼 × N2

𝑖,𝛼/𝑔 � 𝛼. We start by noting that since 𝛼 = 𝜅++, 𝑆 ∩ 𝛼 ∈ 𝐼[𝛼] and so its stationarity is

preserved by 𝜅+-closed forcing. In particular 𝑆 ∩𝛼 is still stationary after forcing with the 𝜅+-closed forcing
poset N1

𝑖,𝛼 ×N2
𝑖,𝛼/𝑔 � 𝛼. After this forcing cf(𝛼) = 𝜅+, so that there is a stationary subset 𝑆0 ⊆ 𝜅+ which is

the “collapsed” version of 𝑆 ∩ 𝛼.
By Easton’s lemma N0

𝑖,𝛼 is still 𝜅+-cc in the extension by N1
𝑖,𝛼 ×N2

𝑖,𝛼/𝑔 � 𝛼, so that 𝑆0 (and hence 𝑆 ∩𝛼)

is stationary in 𝑉 [𝐺M𝑖 * 𝑔].
To see that RP also holds in 𝑉 [𝐺M𝑖 ], let 𝑆 ⊆ 𝜆 be stationary in this model. Then 𝑆 is still stationary in

𝑉 [𝐺M𝑖 * 𝑔], it reflects there and hence easily it reflects in 𝑉 [𝐺M𝑖 ].

4. Down to the first singular cardinal

In this section we prove that Theorem 2 can be obtained for 𝜅 = ℵ𝜔. For the not-TP cases the argument
is the same as before. For the rest we will use the variants of Mitchell forcing from the last section with
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P = Add(𝜅, 𝜆). Then we will force with a Prikry poset with interleaved collapses with guiding generics to
singularise 𝜅 and make it become ℵ𝜔.

In 𝑉 , suppose that 𝜅 is indestructibly supercompact and 𝜆 > 𝜅 is a weakly compact cardinal. Let M𝑖,
𝑖 ∈ {0, 1} be the Mitchell type posets defined in the previous section with respect to P = Add(𝜅, 𝜆), i.e. the
forcing used for the proof of Theorem 1. Now let 𝐺 be M𝑖-generic. Then in 𝑉 [𝐺], 𝜆 = 𝜅++ = 2𝜅 and 𝜅 is
supercompact. In 𝑉 [𝐺], let 𝑈* be a normal measure on 𝑃𝜅(𝜅+). Using arguments as in [16], we can arrange
that if 𝑗* = 𝑗𝑈* , then for every 𝛼 < 𝑗*(𝜅), there is a function 𝑓 : 𝜅 → 𝜅, such that 𝑗*(𝑓)(𝜅) = 𝛼. The key
to the proof is that |𝑗*(𝜅)| = 2𝜅. For a detailed presentation of the preparation, which is analogous to the
case here, see [29, S2].

Now let 𝑈 be the normal measure on 𝜅 obtained from 𝑈* and set 𝑗 = 𝑗𝑈 . Note that Ult(𝑉 [𝐺], 𝑈*), and
Ult(𝑉 [𝐺], 𝑈) compute cardinals correctly up to and including 𝜆. Denote C = [𝛼 ↦→ Coll(𝛼++, < 𝜅)]𝑈 . For
𝑥 ∈ 𝑃𝜅(𝜅+), we use 𝜅𝑥 to denote 𝜅 ∩ 𝑥.

Lemma 9. There is a generic filter for C over Ult(𝑉 [𝐺], 𝑈) in 𝑉 [𝐺].

Proof. Define 𝑘 : Ult(𝑉 [𝐺], 𝑈) → Ult(𝑉 [𝐺], 𝑈*) by stipulating 𝑘([𝑓 ]) = 𝑗*(𝑓)(𝜅), so that 𝑗* = 𝑘 ∘ 𝑗. Since
we arranged that every 𝛼 < 𝑗*(𝜅) can be represented by a function from 𝜅 to 𝜅, we have that the range of
𝑘 contains 𝑗*(𝜅), and so the critical point of 𝑘 is above 𝑗*(𝜅).

Denote C* = [𝑥 ↦→ Coll(𝜅+2
𝑥 , < 𝜅)]𝑈* . Note that 𝑘(C) = C*. By standard arguments, in 𝑉 [𝐺] there is

a generic filter 𝐾* for C* over Ult(𝑉 [𝐺], 𝑈*). Here we use the fact that there are 𝜅++-many antichains to
meet, and the poset is 𝜅++-closed. Clearly, 𝐾 = 𝑘−1“𝐾* is a filter for C. Also, since C has the 𝑗(𝜅)-cc and
the critical point of 𝑘 is high enough, we have that for every maximal antichain 𝒜 ⊆ C, 𝑘(𝒜) = 𝑘”𝒜. It
follows that 𝐾 is C-generic over Ult(𝑉 [𝐺], 𝑈). �

Let 𝐾 in 𝑉 [𝐺] be a generic filter for C over Ult(𝑉 [𝐺], 𝑈). Let 𝑋 = {𝛼 < 𝜅 : 𝛼 is inaccessible}, and note
that 𝑋 ∈ 𝑈 . Then define a Prikry-type forcing poset R to have conditions of the form ⟨𝑑, 𝛼0, 𝑐0, ..., 𝛼𝑛−1, 𝑐𝑛−1, 𝐴,𝐶⟩,
where

∙ ⟨𝛼𝑖 | 𝑖 < 𝑛⟩ is a finite increasing sequence of inaccessibles;
∙ if 𝑛 > 0, then 𝑑 ∈ Coll(𝜔, 𝛼0), otherwise 𝑑 ∈ Coll(𝜔, 𝜅);
∙ for 𝑖 < 𝑛− 1, 𝑐𝑖 ∈ Coll(𝛼++

𝑖 , < 𝛼𝑖+1) and 𝑐𝑛−1 ∈ Coll(𝛼++
𝑛−1, < 𝜅);

∙ 𝐴 ∈ 𝑈 , 𝐴 ⊆ 𝑋, and
∙ dom(𝐶) = 𝐴, for each 𝛼 ∈ 𝐴, 𝐶(𝛼) ∈ Coll(𝛼++, < 𝜅), and [𝐶]𝑈 ∈ 𝐾.

The ordering is as follows:
⟨𝑑′, 𝛼0, 𝑐

′
0, ..., 𝛼𝑚−1, 𝑐

′
𝑚−1, 𝐴

′, 𝐶 ′⟩ ≤ ⟨𝑑, 𝛼0, 𝑐0, ..., 𝛼𝑛−1, 𝑐𝑛−1, 𝐴,𝐶⟩ iff:

∙ 𝑚 ≥ 𝑛, 𝑑′ ≤ 𝑑, for all 𝑖 < 𝑛, 𝑐′𝑖 ≤ 𝑐𝑖;
∙ for all 𝑛 ≤ 𝑖 < 𝑚, 𝛼𝑖 ∈ 𝐴 and 𝑐′𝑖 ≤ 𝐶(𝛼′

𝑖);
∙ 𝐴′ ⊆ 𝐴 and for all 𝛼 ∈ 𝐴′, 𝐶 ′(𝛼) ≤ 𝐶(𝛼).

For a condition 𝑝, we denote the stem of 𝑝 by 𝑠(𝑝) = ⟨𝑑, 𝛼0, 𝑐0, ..., 𝛼𝑛−1, 𝑐𝑛−1⟩ and the length of 𝑝 by
ℓ(𝑝) = 𝑛. We also denote the length of a stem 𝑠 = 𝑠(𝑝), by ℓ(𝑠) = 𝑛.

We refer the reader to Gitik’s survey [14] for a detailed account on this type of forcing and its properties.
We will use the following facts about R:

∙ It has the 𝜅+-cc.
∙ It has the Prikry property, that is to say for every sentence in the forcing language 𝜑 and condition

𝑝 there is 𝑝′ ≤ 𝑝 with the same length deciding 𝜑. As a consequence, the only collapsing of cardinals
occurs below 𝜅 and is done by the Lévy collapses.

∙ By similar arguments to those for the Prikry property, for every dense open set 𝐷 and every condition
𝑝 there exist an extension 𝑞 of 𝑝 with ℓ(𝑞) = ℓ(𝑝) and an integer 𝑛 such that every 𝑛-step extension
of 𝑞 lies in 𝐷. That is, every 𝑟 ≤ 𝑞 with ℓ(𝑟) = ℓ(𝑞) + 𝑛 lies in 𝐷.

∙ The generic object is a sequence

𝑔, 𝛼0, 𝑔0, 𝛼1, 𝑔1, . . .
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where the 𝛼𝑛 form an increasing sequence of inaccessible cardinals, 𝑔 is Coll(𝜔, 𝛼0)-generic and 𝑔𝑖 is
Coll(𝛼++

𝑖 , < 𝛼𝑖+1)-generic. Genericity has a simple and absolute characterisation in terms of 𝑈 and
𝐾; for every 𝐶 such that [𝐶]𝑈 ∈ 𝐾, 𝛼𝑖 ∈ dom(𝐶) and 𝐶(𝛼𝑖) ∈ 𝑔𝑖 for all large 𝑖.

Let ℛ be R-generic over 𝑉 [𝐺]. Using the properties we just listed, in 𝑉 [𝐺][ℛ] we have that 𝜅 = ℵ𝜔 and
𝜆 = ℵ𝜔+2.

Fix 𝑖 ∈ {0, 1}. Let Q be the term forcing M12
𝑖 . Then Q is 𝜅+-directed closed and P × Q projects to M𝑖.

Note that by the 𝜅+-directed closure of Q, in 𝑉 P×Q, 𝑈 is still a normal measure and 𝐾 is a still a guiding
generic over the ultrapower of 𝑉 P×Q by 𝑈 . So in that extension R has the same definition and retains the
same properties.

Our next task is analysing TP, RP and AP in 𝑉 M𝑖*R.

4.1. The tree property. In this subsection, we show a branch lemma to ensure that forcing with R preserves
the tree property. We will follow the argument in Section 4 of a recent paper by Sinapova and Unger [29].

In 𝑉 let 𝑇̇ be an M𝑖 *R name for a 𝜆-tree. Using the weak compactness of 𝜆 in 𝑉 , fix an embedding 𝑘 with
critical point 𝜆 on a transitive model of size 𝜆 containing 𝑇̇ . Since M𝑖 * Ṙ has the 𝜆-cc, we can lift 𝑘 to this
extension by forcing with 𝑘(M𝑖 * R)/𝐺 * ℛ. Since the lifted embedding determines a branch through the
tree, it is enough to show that forcing with 𝑘(M𝑖 * R)/𝐺 * ℛ does not add new branches through 𝑇 .

Note that 𝑈 ⊆ 𝑘(𝑈), 𝐾 ⊆ 𝑘(𝐾), and R ⊆ 𝑘(R). Of course, there are more subsets in 𝑘(𝑈), but by the
characterization of genericity for Prikry posets, 𝑘(R) induces a generic for R. Let us give some definitions.
If 𝑟, 𝑟′ are Prikry conditions we say that 𝑟′ is a direct extension of 𝑟 if 𝑟′ ≤ 𝑟 and they have the same length,
and we write 𝑟′ ≤* 𝑟. For 𝑟 in R or in 𝑘(R), we let 𝑠(𝑟) denote its stem. Note that the stem is always in
𝑉 [𝐺]. For stems 𝑠, 𝑠′, we say that 𝑠′ extends 𝑠, if there are Prikry conditions 𝑟′ ≤ 𝑟 with stems 𝑠′ and 𝑠,
respectively. If ℓ(𝑠′) ≥ ℓ(𝑠) and 𝑟 is a condition with stem 𝑠, we say that “points in 𝑠′ above 𝑠 are compatible
with 𝑟” if there is 𝑟′ ≤ 𝑟 with stem extending 𝑠′. Also, for a stem 𝑠, we write “𝑠 
* 𝜑” if there is 𝑟 ∈ R with
stem 𝑠, such that 𝑟 
 𝜑.

The next lemma comes from the work of Cummings and Foreman [5], adapted to our case.

Lemma 10. Work in 𝑉 [𝐺]. Let 𝑟 ∈ R, 𝑚 ∈ 𝑘(M𝑖) and 𝑟̇ be a 𝑘(M𝑖)-name for an element of 𝑘(R), such

that 𝑚 decides the value of the stem of 𝑟̇. Then 𝑟 forces (𝑚, 𝑟̇) /∈ 𝑘(M𝑖 *R)/(𝐺 * ℛ̇) if and only if one of the
following holds:

(1) 𝑚 /∈ 𝑘(M𝑖)/𝐺.
(2) 𝑠(𝑟) and 𝑠(𝑟̇) have no common extension.
(3) ℓ(𝑟̇) ≥ ℓ(𝑟) and points in 𝑠(𝑟̇) above 𝑠(𝑟) are not compatible with 𝑟.
(4) ℓ(𝑟) ≥ ℓ(𝑟̇) and 𝑚 forces that points in 𝑠(𝑟) above 𝑠(𝑟̇) are not compatible with 𝑟̇.

Remark 3. A key point in the proof of Lemma 10 is that due to the guiding generics, conditions in R with
the same stem are compatible.

Lemma 11. Working in 𝑉 [𝐺], let 𝑟 ∈ R, 𝑚 ∈ 𝑘(M𝑖)/𝐺 and let 𝑟̇ be a 𝑘(M𝑖)/𝐺-name for a condition in
𝑘(R) such that

(1) 𝑚 decides the value of 𝑠(𝑟̇),
(2) 𝑠(𝑟) extends 𝑠(𝑟̇) and
(3) 𝑚 forces that points in 𝑠(𝑟) above 𝑠(𝑟̇) are compatible with 𝑟̇,

then there is a direct extension of 𝑟 which forces that (𝑚, 𝑟̇) ∈ 𝑘(M𝑖 * R)/(𝐺 * ℛ̇).

Proof. Let 𝑟0 be a direct extension of 𝑟 which decides the statement (𝑚, 𝑟̇) ∈ 𝑘(M𝑖 * R)/(𝐺 * ℛ). It
is straightforward to check that we are not in any of the cases of Lemma 10, so it is not the case that
𝑟0 
 (𝑚, 𝑟̇) /∈ 𝑘(M𝑖 * R)/(𝐺 * ℛ̇). It follows that 𝑟0 forces (𝑚, 𝑟̇) into the quotient. �

Let N = 𝑘(M𝑖 *R)/𝐺 *ℛ. We will write conditions in N as triples (𝑝, 𝑓, 𝑟̇), where 𝑝 ∈ 𝑘(P), 𝑓 ∈ 𝑘(Q) and
𝑟̇ is a 𝑘(M𝑖)-name for a condition in 𝑘(R). Here we identify 𝑘(Q) with its nontrivial coordinates. We will
also refer to ≤𝑘(Q) as the “term ordering”.

Let 𝜏 : 𝜆 → 𝜅+ be a branch in the extension by N. Suppose for contradiction that 𝜏 is a new branch.
Note that for all 𝛼 < 𝜆, 𝜏 � 𝛼 ∈ 𝑉 [𝐺][ℛ].
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Lemma 12. In 𝑉 [𝐺][ℛ], there is a condition (𝑝, 𝑓, 𝑟̇) ∈ N, such that for each 𝑥, 𝛼 < 𝜆 and (𝑝′, 𝑓 ′, 𝑟̇′) ≤N
(𝑝, 𝑓, 𝑟̇), if 𝑓 ′ ≤𝑘(Q) 𝑓 and (𝑝′, 𝑓 ′, 𝑟̇′) 
 𝜏 � 𝛼 = 𝑥, then (𝑝, 𝑓 ′, 𝑟̇) 
 𝜏 � 𝛼 = 𝑥.

Proof. The proof is essentially the same as in [29], but we will go over the main steps for completeness.
Suppose otherwise. Then in 𝑉 [𝐺], let 𝑟 ∈ R force the negation of the conclusion. Then whenever 𝑟 

(𝑝, 𝑓, 𝑟̇) ∈ Ṅ, the following set 𝐷 is dense below 𝑟 in R, where 𝐷 consists of conditions 𝑟′ ∈ R, such that
there are 𝑝0, 𝑝1 ∈ 𝑘(P), 𝑓* ≤𝑘(Q) 𝑓, 𝑘(M𝑖)/𝐺-names 𝑟̇0, 𝑟1 for elements in 𝑘(R), 𝛼 < 𝜆, and R-names 𝑥0, 𝑥1

such that

∙ for 𝑖 ∈ {0, 1}, 𝑟′ 
 (𝑝𝑖, 𝑓
*, 𝑟̇𝑖) ≤N (𝑝, 𝑓, 𝑟̇);

∙ for 𝑖 ∈ {0, 1}, 𝑟′ 
 “(𝑝𝑖, 𝑓
*, 𝑟̇𝑖) 
N 𝜏 � 𝛼 = 𝑥𝑖”;

∙ 𝑥0, 𝑥1 are forced to be distinct.

Now, by recursion over 𝛼 < 𝜅+, construct 𝑝𝑖𝛼, 𝑥
𝑖
𝛼, 𝑥𝛼, 𝑓𝛼, 𝑟̇

𝑖
𝛼, 𝑟𝛼 and 𝛾𝛼 for 𝑖 ∈ 2, such that ⟨𝛾𝛼 : 𝛼 < 𝜅+⟩

is increasing, ⟨𝑓𝛼 : 𝛼 < 𝜅+⟩ is ≤𝑘(Q)-decreasing, and for each 𝛼, 𝑖, 𝑟𝛼 ∈ R forces that:

∙ (𝑝𝑖𝛼, 𝑓𝛼, 𝑟̇
𝑖
𝛼) ∈ N;

∙ (𝑝𝑖𝛼, 𝑓𝛼, 𝑟̇
𝑖
𝛼) 
 𝜏 � sup𝛽<𝛼 𝛾𝛽 = 𝑥𝛼;

∙ 𝑥0
𝛼 ̸= 𝑥1

𝛼;
∙ (𝑝𝑖𝛼, 𝑓𝛼, 𝑟̇

𝑖
𝛼) 
 𝜏 � 𝛾𝛼 = 𝑥𝑖

𝛼, and
∙ (𝑝𝑖𝛼, 𝑓𝛼) decides 𝑠(𝑟̇𝑖𝛼) and 𝑠(𝑟𝛼) extends it.

Using that there are only 𝜅 many possible stems and that P×P has the 𝜅+-cc, we find 𝛽 < 𝛽′ < 𝜅+, such
that 𝑠(𝑟𝛽) = 𝑠(𝑟𝛽′), and for 𝑖 ∈ 2, 𝑠(𝑟̇𝑖𝛽) = 𝑠(𝑟̇𝑖𝛽′), and 𝑝𝑖𝛽 is compatible with 𝑝𝑖𝛽′ . Then for 𝑖 ∈ 2, let 𝑝𝑖 be

the weakest lower bound for 𝑝𝑖𝛽 and 𝑝𝑖𝛽′ and let 𝑟̇𝑖 be a name for a common extension of 𝑟̇𝑖𝛽 and 𝑟̇𝑖𝛽′ in 𝑘(R)
with the same stem.

By Lemma 11, there is a direct extension 𝑟 of 𝑟𝛽 and 𝑟𝛽′ which forces that each (𝑝𝑖, 𝑓𝛽′ , 𝑟̇𝑖) is in N. We
choose a generic ℛ′ containing 𝑟. Then in 𝑉 [𝐺][ℛ′], we have that (𝑝𝑖, 𝑓𝛼′ , 𝑟̇𝑖) is in N, and so for 𝑖 ∈ 2,
𝑥𝛼′ � 𝛾𝛼 = 𝑥𝑖

𝛼. This implies that 𝑥0
𝛼 = 𝑥1

𝛼, a contradiction. �

Work in 𝑉 [𝐺]. Let 𝑟* ∈ R force that (𝑝, 𝑓, 𝑟̇) is as in the conclusion of Lemma 12. We construct sequences

⟨𝑓𝑠 : 𝑠 ∈ 2<𝜅⟩, ⟨𝛼ℎ
𝑠 , 𝑥

ℎ
𝑠 , 𝛾

ℎ
𝑠a𝑖 : 𝑠 ∈ 2<𝜅, 𝑖 ∈ 2, ℎ is a stem extending 𝑠(𝑟*)⟩,

such that:

(1) if 𝑠′ ⊇ 𝑠, then 𝑓𝑠′ ≤𝑘(Q) 𝑓𝑠;

(2) for all 𝑠, ℎ, 𝑖, ℎ 
* (𝑝, 𝑓𝑠a𝑖, 𝑟̇) 
 “𝜏(𝛼ℎ
𝑠 ) = 𝛾ℎ

𝑠a𝑖, 𝜏 � 𝛼
ℎ
𝑠 = 𝑥ℎ

𝑠”, and

(3) for all 𝑠, ℎ, 𝛾ℎ
𝑠a0 ̸= 𝛾ℎ

𝑠a1.

Let 𝛼* = supℎ,𝑠 𝛼
ℎ
𝑠 < 𝜆. For every 𝑔 ∈ 2𝜅, let 𝑓𝑔 ≤𝑘(Q) 𝑓𝑔�𝜂 for all 𝜂 < 𝜅 and let 𝑟𝑔 ∈ R be such that 𝑟𝑔 ≤ 𝑟*

and for some 𝛾𝑔 < 𝜅+,

𝑟𝑔 
R (𝑝, 𝑓𝑔, 𝑟̇) 
 𝜏(𝛼*) = 𝛾𝑔.

Take 𝑔1 ̸= 𝑔2 to be such that for some ℎ, 𝛾, ℎ = 𝑠(𝑟𝑔1) = 𝑠(𝑟𝑔2), 𝛾 = 𝛾𝑔1 = 𝛾𝑔2 . Let 𝑟 be a common extension
of 𝑟𝑔1 and 𝑟𝑔2 with stem ℎ. Let 𝜂 < 𝜅 be such that 𝑔1 � 𝜂 = 𝑔2 � 𝜂 = 𝑠 and 𝑔1(𝜂) ̸= 𝑔2(𝜂). Finally, let 𝑞 ≤ 𝑟
witness item (2) above for 𝑠a0, 𝑠a1 and ℎ.

We choose a generic ℛ′ containing 𝑞. Then in 𝑉 [𝐺][ℛ′], we have that both (𝑝𝑖, 𝑓𝑔1 , 𝑟̇) and (𝑝𝑖, 𝑓𝑔2 , 𝑟̇) force
that 𝜏(𝛼*) = 𝛾, but they force different values for 𝜏(𝛼ℎ

𝑠 ). This is a contradiction.
We have proven the following lemma, which takes care of preserving the tree property for the cases

TP+RP.

Lemma 13. 𝑉 [𝐺][ℛ] satisfies the tree property at 𝜆 = ℵ𝜔+2. �

Next we look at the cases TP + not-RP. Namely, we want to modify the above argument to show that
after forcing with R over 𝑉 M𝑖*PNRSS , the tree property is preserved.

Note that there is a projection from M𝑖 * Add(𝜆, 1) * R to M𝑖 * (PNRSS × R). Let 𝐺 be a generic for M𝑖

and 𝒮 × ℛ be generic for PNRSS × R over 𝑉 [𝐺]. As before, we lift an embedding 𝑘 witnessing the weak

compactness of 𝜆 by forcing with 𝑘(M𝑖 * (ṖNRSS× Ṙ))/(𝐺 * (ℛ×𝒮)), and we get a branch in that extension.
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By the distributivity of 𝑘(PNRSS), it is enough to show that N′ = 𝑘(M𝑖 * Ṙ)/(𝐺 * (ℛ× 𝒮)) does not add a
new branch.

In 𝑉 [𝐺*ℛ] define N = Add(𝜆, 1)*Ṅ′. We write conditions in N of the form (𝑎, 𝑝, 𝑓, 𝑟̇) where 𝑎 = (𝑎0, 𝑎1) ∈
Add(𝜆, 1), 𝑎0 ∈ PNRSS, 𝑝 ∈ 𝑘(P), 𝑓 ∈ 𝑘(Q), and 𝑟̇ is a name for an element in 𝑘(R). We will show that N
does not add a branch.

Let 𝜏 : 𝜆 → 𝜅+ be a branch in the extension by N. Suppose for contradiction that 𝜏 is a new branch.
Note that as before, for all 𝛼 < 𝜆, 𝜏 � 𝛼 ∈ 𝑉 [𝐺][ℛ], so that Lemma 12 applies. In particular we can decide
different values for initial segments of 𝜏 only by extending the 𝑓 and the 𝑎-parts.

Work in 𝑉 [𝐺] and as before apply Lemma 12 to construct sequences ⟨𝑎𝜂0 : 𝜂 < 𝜅⟩, ⟨𝑎𝑠1, 𝑓𝑠 : 𝑠 ∈
2<𝜅⟩, ⟨𝛼ℎ

𝑠 , 𝑥
ℎ
𝑠 , 𝛾

ℎ
𝑠a𝑖 : 𝑠 ∈ 2<𝜅, 𝑖 ∈ 2, ℎ is a stem⟩, such that:

(1) if 𝑠′ ⊇ 𝑠, then 𝑓𝑠′ ≤𝑘(Q) 𝑓𝑠, (𝑎
|𝑠′|−1
0 , 𝑎𝑠

′

1 ) ≤ (𝑎
|𝑠|−1
0 , 𝑎𝑠1);

(2) for all 𝑠, ℎ, 𝑖, ℎ 
* (𝑎
|𝑠|
0 , 𝑎𝑠

a𝑖
1 , 𝑝, 𝑓𝑠a𝑖, 𝑟̇) 
 𝜏(𝛼ℎ

𝑠 ) = 𝛾ℎ
𝑠a𝑖, 𝜏 � 𝛼

ℎ
𝑠 = 𝑠ℎ𝑠 , and

(3) for all 𝑠, ℎ, 𝛾ℎ
𝑠a0 ̸= 𝛾ℎ

𝑠a1.

Let 𝛼* = supℎ,𝑠 𝛼
ℎ
𝑠 < 𝜆. For every 𝑔 ∈ 2𝜅, let 𝑓𝑔 ≤𝑘(Q) 𝑓𝑔�𝜂 for all 𝜂 < 𝜅, and let (𝑎𝑔0, 𝑎

𝑔
1) ≤ (𝑎𝜂0 , 𝑎

𝑔�𝜂
1 ) for

all 𝜂 < 𝜅. Then let 𝑟𝑔 ∈ R be such that

𝑟𝑔 
R (𝑎𝑔0, 𝑎
𝑔
1, 𝑝, 𝑓𝑔, 𝑟̇) 
 𝜏(𝛼*) = 𝛾𝑔.

Take 𝑔1 ̸= 𝑔2 to be such that for some ℎ, 𝛾, ℎ = 𝑠(𝑟𝑔1) = 𝑠(𝑟𝑔2), 𝛾 = 𝛾𝑔1 = 𝛾𝑔2 . Let 𝑟 be a common extension
of 𝑟𝑔1 and 𝑟𝑔2 with stem ℎ. Let 𝜂 < 𝜅 be such that 𝑔1 � 𝜂 = 𝑔2 � 𝜂 = 𝑠 and 𝑔1(𝜂) ̸= 𝑔2(𝜂). Finally, let 𝑞 ≤ 𝑟
witness item (2) above for 𝑠a0, 𝑠a1. Then force below 𝑞 to get a contradiction.

Then we have proven the following lemma:

Lemma 14. Let 𝐺 * 𝒮 be M𝑖 * PNRSS-generic and ℛ be R-generic over 𝑉 [𝐺 * 𝒮]. Then in 𝑉 [𝐺][𝒮][ℛ] we
have the tree property at 𝜆 = ℵ𝜔+2. �

As explained before, we use the preceding lemma in the cases TP + not-RP.

4.2. Reflection. First, let us point out that R preserves failure of reflection at 𝜆, simply because R preserves
stationary sets of 𝜆. This takes care of preserving not-RP for the cases of TP ± AP + not-RP.

Next, we show that R also preserves reflection at 𝜆.

Lemma 15. Suppose that 𝑊 is a model where 𝜅 is regular, 𝜆 = 𝜅++, RP holds at 𝜆. Then in 𝑊R, RP
holds at 𝜆.

Proof. Given 𝑆̇ that is forced to be a stationary subset of 𝜆 = 𝜅++, suppose for contradiction that it is forced
to be non-reflecting at points of cofinality 𝜅+ by some 𝑝 in R. Since there are only 𝜅-many stems, there is
a stem ℎ, extending the stem of 𝑝, such that 𝑇 = {𝛽 < 𝜆 : ℎ 
* 𝛽 ∈ 𝑆̇} is stationary. By strengthening if

necessary, we may assume 𝑝 has a stem ℎ. For each 𝛽 ∈ 𝑇 , let 𝑟𝛽 be with stem ℎ, such that 𝑟𝛽 
 𝛽 ∈ 𝑆̇. By
RP in 𝑊 , there is 𝜆̄ with cf(𝜆̄) = 𝜅+, such that 𝑇 ∩ 𝜆̄ is stationary.

Let 𝐷 := {𝑞 : (∃𝐶)(𝐶 ⊆ 𝜆̄ is club and 𝑞 
 𝐶 ∩ 𝑆̇ = ∅)}. By our assumption and since P has the 𝜅+-cc, 𝐷
is open and dense below 𝑝, so there exist 𝑝′ ≤* 𝑝 and 𝑛 such that every 𝑛-step extension of 𝑝′ is in 𝐷. Write
𝑝′ = ⟨ℎ,𝐴′, 𝐶 ′⟩. Also, for each 𝛽 ∈ 𝑇 , denote 𝑟𝛽 = ⟨ℎ,𝐴𝛽 , 𝐶𝛽⟩. By strengthening if necessary, we assume
that for each 𝛽, 𝑟𝛽 ≤ 𝑝′.

For simplicity, suppose that 𝑛 = 1 (the argument for the general case in similar). Define 𝜑 : 𝑇 ∩ 𝜆̄ → 𝜅 by
stipulating 𝜑(𝛽) = min(𝐴𝛽). This is constant on a stationary set, so let 𝛼 < 𝜅 be such that 𝑇𝛼 = 𝜑−1{𝛼} is
stationary in 𝜆̄. Now let

𝑞 = ⟨ℎa⟨𝛼,𝐶 ′(𝛼)⟩, 𝐴′ ∖ 𝛼 + 1, 𝐶 ′ � (𝐴′ ∖ 𝛼 + 1)⟩.

By our choice of 𝑝′, we have that for some club 𝐶 ⊆ 𝜆̄, 𝑞 
 𝐶 ∩ 𝑆̇ = ∅. But now let 𝛽 ∈ 𝑇𝛼 ∩ 𝐶 and let
𝑟 = ⟨ℎa⟨𝛼,𝐶𝛽(𝛼)⟩, 𝐴′

𝛽 , 𝐶
′
𝛽⟩, where 𝐴′

𝛽 = 𝐴𝛽 ∖ 𝛼 + 1 and 𝐶 ′
𝛽 = 𝐶𝛽 � 𝐴′

𝛽 . Then 𝑟 ≤ 𝑟𝛽 , and so 𝑟 
 𝛽 ∈ 𝑆̇, but
also 𝑟 ≤ 𝑞. This is a contradiction. �



16 J. CUMMINGS, S.-D. FRIEDMAN, M. MAGIDOR, A. RINOT, AND D. SINAPOVA

4.3. Approachability. At this stage, we are left with showing that forcing with R preserves the properties
of the approachability ideal at 𝜆 as arranged by the choice of M0 or M1. As we have verified that AP holds
at 𝜆 after forcing with M0 and approachability is persistent for models with the same cardinals, we have:

Lemma 16. Suppose that 𝐺 is M0 or M0 * PNRSS-generic. Then in 𝑉 [𝐺][ℛ], AP at 𝜆 holds. �

For not-AP we use a theorem of Gitik and Krueger from [15], who showed that for 𝜆 = 𝜅++, after forcing
with a 𝜅-centered poset the approachability ideal of 𝜆 in the generic extension is generated by the ground
model ideal 𝐼[𝜆], yielding:

Lemma 17. Suppose that 𝐺 is M1 or M1 * PNRSS-generic. Then in 𝑉 [𝐺][ℛ], AP at 𝜆 fails. �

Thus, we have established the third theorem of this paper (overstating the large cardinal assumption).

Theorem 3. Let 𝜅 be an indestructible supercompact cardinal and let 𝜇 = 𝜅+. Then, assuming the existence
of a weakly compact cardinal above 𝜅, for each Boolean combination Φ of TP, AP and RP there exists a
generic extension in which 𝜅 = ℵ𝜔, 𝜇 = ℵ𝜔+1, 𝜆 = ℵ𝜔+2, and Φ holds. �

Remark 4. It is also possible to prove Theorem 3 using an approach analogous to that used in the proof of
Theorems 1 and 2, writing the relevant quotients as the projection of a product of a 𝜅+-closed forcing with
a forcing whose square is 𝜅+-cc. This is the method used in [12].

5. Open questions

(1) In several of our cases we have assumed the existence of a weakly compact cardinal 𝜆 above 𝜅 to get
a Boolean combination of AP, TP and RP to hold at 𝜅++. For the TP cases this is necessary, as the
tree property demands a weakly compact. However for some of the not-TP cases we can use less:
Our argument for not-TP + AP + not-RP used no large cardinal, and as Harrington and Shelah
[17] obtained the RP from just a Mahlo cardinal, the case not-TP + AP + RP can be handled with
just a Mahlo cardinal, and in fact, non-TP is moreover witnessed by a Souslin tree (cf. [23]). Also,
our argument for the case not-TP + not-AP + not-RP only used a Mahlo cardinal and it can be
shown that these uses are necessary. This leaves one open case: not-TP + not-AP + RP; can this
also be done assuming just a Mahlo cardinal?

(2) In the cases of 𝜅 singular we used a measurable cardinal 𝜅 that remains measurable after forcing with
Add(𝜅, 𝜆), where 𝜆 > 𝜅 is weakly compact. This has the consistency strength of a weakly compact
hypermeasurable cardinal. But it is conceivable that much less strength is needed. For example,
although the TP at 𝜅++ with 𝜅 measurable is equiconsistent with a weakly compact hypermeasurable
cardinal (see [6]) and this was used in [11] to get the TP at ℵ𝜔+2, Gitik [13] showed that indeed
much less strength is needed for the latter result. Does Gitik’s result extend to the entire eightfold
way?

(3) This paper looks at the eightfold way just for a single cardinal 𝜇. Can it be carried out for many
cardinals, such as all of the ℵ𝑛’s (𝑛 > 1), simultaneously?

(4) What is the status of the eightfold way at successors of singular cardinals? The situation here is
known to be more complicated: if every stationary subset of ℵ𝜔+1 reflects then approachability holds
(see Eisworth’s survey [7]), but by work of Fontanella and Magidor [8], the same is not true at ℵ𝜔2+1.
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