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THE EHRENFEUCHT-FRAISSE METHOD

first-order theory T' complete?

AET and BET implies A =ro B

Ehrenfeucht-Fraissé method: validity of formulas with quantifiers

Yy
Y

existence of extensions of partial isomorphisms

Fraissé (1953) Ehrenfeucht(1961)

A E>F0ml§

\ .

FO,, validity transfers from A to B
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ExXAMPLE. The class EVEN. of (finite) orderings of even length is not
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EVEN.: A, B orderings:

(|JA] <2™ or |[B| <2™) and A =)ro,,B imply A =B

|Al, |B| > 2™ imply A =)ro,, B

in particular,

{0,1,...,2" +1},<) =)ro,, ({0,1,...,2™} <)

\ s A\ J/
~~ ~

A EEVEN B ¢ EVEN <

(Am, Bm)men (EVEN., FO)-sequence

P #£NP? NP # co-NP?

via the Ehrenfeucht-Fraissé method
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1. Key problems and the relevant logics.
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KEY PROBLEMS AND THE RELEVANT LOGICS
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The logic ¥1:
Fragment of second-order logic consisiting of the sentences of the form

X1 ... 33X,

where ¢ = ¢(X1,...,X¢) € FO and Xi,..., X, are second-order variables of any
arity.
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The logic LFP  (FO(LFP)) (least fixed-point logic)

Immerman-Vardi Theorem. LEFP =~ P. The logic LF'P captures P on ordered

structures.
— P <o LFP. Every P-class of ordered structures is axiomatizable in LFP.

— LFP <. P. Every class of (ordered) structures axiomatizable in LFP is a

P-class.

LFP-operator =~ p-operator of recursion theory

ILEP, ... x. z0] U1 ... Uy

Z r-ary second-order variable
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L € {FO, X1, LFP},

L,, = class of formulas of L of “quantifier rank” at most m
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L € {FO, X1, LFP},

L,, = class of formulas of L of “quantifier rank” at most m

Ehrenfeucht-Fraissé Theorem. () class of structures.

() is not axiomatizable in . <= there is a (Q, L)-sequence,
that is, a sequence (A, Bm)men with

Am € Q, Bn € Q, and A, =)r, Bm.

P#NP <+ 3-CoLc ¢P
<— 3-COL< is not axiomatizable in LF'P

<= there is a (3-CoOL«, LFP)-sequence.

NP # co-NP <= nNoT-3-CoL ¢ NP
<= NOT-3-COL is not axiomatizable in 3]

<= there is a (NOT-3-CoOL, X )-sequence.
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i
(Ajtai, Fagin) Reachability in directed graphs is not axiomatizable in monadic X1.

{(G,a,b) | G directed graph, a,b € G, there is a path from a to b}
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i
(Ajtai, Fagin) Reachability in directed graphs is not axiomatizable in monadic X1.

{(G,a,b) | G directed graph, a,b € G, there is a path from a to b}

(Schwentick) The class of connected ordered graphs is not axiomatizable in

monadic ¥1.

LEFP

(Grohe) The arity hierarchy of LFP is strict.
(Kubierschky) For k£ € N the hierarchy of LFP formulas of arity at most & whose

m-th member consists of formulas with at most m nested fixed-point operators is

strict.
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P #NP <= thereis a (3-CoL., LFP)-sequence.

NP # co-NP <= there is a (NOT-3-COL, X1 )-sequence.

Fagin, Stockmeyer, Vardi (1995)

It is known that X1 # 117 if and only if such a separation can be proven via
second-order Ehrenfeucht-Fraissé games. Unfortunately, “playing”
second-order Ehrenfeucht-Fraissé games is very difficult, and the above
promise 1s still largely unfulfilled; for example, the equivalence between the
NP = co-NP question and the X1 = II question has not so far led to any

progress on either of these questions.

One way of attacking these difficult questions is to restrict the classes under
constderation. .. The hope 1s that the restriction to the monadic classes will
yield more tractable questions and will serve as a training ground for

attacking the problems in theiwr full generality.
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second-order Ehrenfeucht-Fraissé games. Unfortunately, “playing”
second-order Ehrenfeucht-Fraissé games is very difficult, and the above
promise 1s still largely unfulfilled; for example, the equivalence between the
NP = co-NP question and the X1 = II question has not so far led to any
progress on either of these questions.

One way of attacking these difficult questions is to restrict the classes under
constderation. .. The hope 1s that the restriction to the monadic classes will
yield more tractable questions and will serve as a training ground for

attacking the problems in theiwr full generality.

Grohe’s and Kubierschky’s “arity hierarchy results” refer to logics with nonmonadic

second-order quantifiers

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-COL, X1 )-sequence.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-COL, X1 )-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-COL, X1 )-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

No (3-COL«, LFP )-sequence (Am, Bm)men can be generated by an algorithm S,
S:m = (Am, Bm), in time (|| Aml|| + ||Bm])°Y.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-CoOL, ¥1)-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

No (3-CoL«, LFP )-sequence (Am, Bm)men can be generated by an algorithm S,
S:m = (Am, Bm), in time (|| Aml|| + ||Bm])°Y.

In all known successful applications of the Ehrenfeucht-Fraissé method the

sequence of boards could be constructed in polynomial output time.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-CoOL, ¥1)-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

No (3-CoL«, LFP )-sequence (Am, Bm)men can be generated by an algorithm S,
S:m = (Am, Bm), in time (|| Aml|| + ||Bm])°Y.

No (NOoT-3-COL., Z%)—Sequence can be generated in polynomial output time.

In all known successful applications of the Ehrenfeucht-Fraissé method the

sequence of boards could be constructed in polynomial output time.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-CoOL, ¥1)-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

No (3-CoL«, LFP )-sequence (Am, Bm)men can be generated by an algorithm S,
S:m = (Am, Bm), in time (|| Aml|| + ||Bm])°Y.

No (NOoT-3-COL., Zi)—sequenoe can be generated in polynomial output time.

() class of ordered structures. P <. L. Then

no (Q, L)-sequence can be generated in polynomial output time.

In all known successful applications of the Ehrenfeucht-Fraissé method the

sequence of boards could be constructed in polynomial output time.

July, 2013 Sy's Conference Wien



Page 13

LIMITATIONS OF THE EHRENFEUCHT-FRAISSE METHOD

P#NP <= thereis a (3-CoL., LFP)-sequence.
NP # co-NP <= there is a (NOT-3-CoOL, ¥1)-sequence.

THEOREM. No (3-CoOL., LFP)-sequence can be generated in polynomial output time.

No (3-CoL«, LFP )-sequence (Am, Bm)men can be generated by an algorithm S,
S:m = (Am, Bm), in time (|| Aml|| + ||Bm])°Y.

No (NOoT-3-COL., Z%)—Sequence can be generated in polynomial output time.

() class of ordered structures. P <. L. Then

no (Q, L)-sequence can be generated in polynomial output time.

In all known successful applications of the Ehrenfeucht-Fraissé method the

sequence of boards could be constructed in polynomial output time.

ExXAMPLE. There is a (3-COL«, FO)-sequence computable in space
O(log ([l Am|| + [[Bm||))-
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Proof sketch.

1. Let (Am, Bm)men be a (3-COL<, LFP)-sequence. No polynomial time
algorithm C accepts all A,, and rejects all B,,.

2. Assume G generates (A, Bm)men in polynomial output time.

3. We turn G into a polynomial time algorithm C such that for infinitely many m,
C accepts A,, and C rejects B,
that is, there is a increasing function f : N — N such that for all m,

C accepts A¢(my and C rejects By(m).

4. An infinite subsequence of a (3-CoL«, LFP)-sequence is a
(3-CoL<, LFP)-sequence; thus, (Af(m), Bf(m))men is a (3-CoL<, LFP)-sequence.

5. Items 3 and 4 contradict 1.
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July, 2013 Sy's Conference Wien



Page 15

THEOREM. @ class of ordered structures.

If P <. L, then no (Q, L)-sequence can be generated in polynomial output time.

() class of structures.

— If P < L and GI € P, then no (Q, L)-sequence can be generated in polynomial

output time.

July, 2013 Sy's Conference Wien



Page 15
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If P <. L, then no (Q, L)-sequence can be generated in polynomial output time.

() class of structures.

— If P < L and GI € P, then no (Q, L)-sequence can be generated in polynomial

output time.

— If GI € P, then no (Q, ¥1)-sequence can be generated in polynomial output time

(thus, no (NOT-3-CoL, ¥1)-sequence can be generated in polynomial output time).
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